
Not All Data are Created Equal: Data and Pointer Prioritization for Scalable
Protection Against Data-Oriented Attacks

Salman Ahmed
IBM Research ∗

Hans Liljestrand
University of Waterloo

Hani Jamjoom
IBM Research

Matthew Hicks
Virginia Tech

N. Asokan
University of Waterloo

Danfeng (Daphne) Yao
Virginia Tech

Abstract
Data-oriented attacks are becoming increasingly realistic and
effective against the state-of-the-art defenses in most operat-
ing systems. These attacks manipulate memory-resident data
objects (data and pointers) without changing the control flow
of a program. Software and hardware-based countermeasures
for protecting data and pointers suffer from performance bot-
tlenecks due to excessive instrumentation of all data objects.
In this work, we propose a Data and Pointer Prioritization
(DPP) framework utilizing rule-based heuristics to identify
sensitive memory objects automatically from an application
and protect only those sensitive data utilizing existing coun-
termeasures. We evaluate the correctness of our framework
using the Linux Flaw Project dataset, Juliet Test Suite, and five
real-world programs (used for demonstrating data-oriented
attacks). Our experiments show that DPP can identify vulner-
able data objects from our tested applications by prioritizing
as few as only 3–4% of total data objects. Our evaluation of
the SPEC CPU2017 Integer benchmark suite shows that DPP-
enabled AddressSanitizer (ASan) can improve performance
(in terms of throughput) by ∼1.6x and reduce run-time over-
head by∼70% compared to the default ASan while protecting
all the prioritized data objects.

1 Introduction

With the advancement toward practical code pointer protec-
tion countermeasures [14,32,33,39,52] and practical Control-
Flow Integrity (CFI) [26, 42, 68], we anticipate a shift to-
wards the manipulation of sensitive memory-resident data
and pointers as attack vectors. In recent research, we observe
an uptick in Data-Oriented Attacks (DOAs), also known as
non-control data attacks [17,30,31,36,43,54,55,65,67] even
though DOAs were introduced more than a decade ago [10].
DOAs achieve their malicious goals by changing program
behavior without violating the normal flow of a program as

∗A significant amount of the work was conducted while the first author
was a graduate student at Virginia Tech.

specified by its Control-Flow Graph (CFG). Conceptually,
DOAs [3,10,30,36,67] can modify all kinds of data to change
program behavior such as leaking sensitive information [6]
or performing privilege escalations [16]. However, corrup-
tion of data pointers [14] is often desirable as it allows leak-
ing the address space layout [23, 58], stitching gadgets in
Data-Oriented Programming (DOP)-based attacks [31], and
performing stack-based [10] or heap-based [60] exploitation.

To stop attackers from manipulating memory-resident data
and their pointers (hereafter referred to simply as “data ob-
jects” for the sake of brevity), researchers have proposed both
software and hardware-based countermeasures. Software-
based countermeasures such as Data-Flow Integrity (DFI) [9],
Data-Space Randomization (DSR) [4, 7, 53], and memory
tagging techniques [44, 45] suffer from run-time overhead
(ranging from 42% to 116% [4, 7, 9, 44, 45, 53]) due to inter-
procedural DFI, encryption, and masking. On the other hand,
hardware-based countermeasures (e.g., HDFI [63], Intel’s
Control-Flow Enforcement Technology (CET) [32], and ARM
Pointer Authentication (PA) [52]) are efficient, but in general,
limited to certain platforms. Furthermore, the overhead is
non-negligible, e.g., ARM PA costs on average around 19-
26% 1 [24, 40] overhead for protecting data pointers.

The main reason for this run-time overhead is the huge
number of data objects, on average ∼100x compared to code
pointers in an application 2. One solution for reducing this
overhead is to identify the sensitive data objects and prior-
itize them for protection, rather than all. Besides reducing
overhead, it is also extremely important to know what the
most sensitive data objects are so that existing defense mech-
anisms can put extra effort to protect them. There are two
approaches to identifying sensitive data. One approach is
manual, and the other one is best effort semi-automatic. Prior
works [30, 49, 50] have suggested the manual earmarking of
sensitive data. However, it is time-consuming and error-prone.
A few best-effort semi-automated approaches [36, 43] can

1Evaluated using software-based simulation of PA.
2We obtain the numbers by counting the code pointers, and data variables

and pointers from eight real-world applications

determine the criticality or sensitiveness of data. But these
works require traces of data accesses, including traces for
both normal and violating execution. As a result, these so-
lutions may have scalability issues due to the need for huge
and relevant execution and access traces. Besides, exercising
all the violating execution paths is challenging. Furthermore,
these techniques may not be application-agnostic and cannot
work with existing countermeasures. Thus, there is a need for
a scalable and platform- or application-agnostic automated
approach for identifying and prioritizing sensitive data.

In this paper, we automate the identification and prioriti-
zation of sensitive data objects through our DPP framework.
DPP uses common and widely applicable vulnerability pat-
terns to identify and prioritize sensitive data objects. These
vulnerability patterns enable DPP to prevent unknown and
future DOAs. DPP is also platform- and application-agnostic
and adaptable with existing countermeasures. DPP uses rule-
based heuristics to identify sensitive data objects.

We address two key challenges. First, it is challenging to
find a representative set of rules with comprehensive coverage
since DOAs are constantly evolving. To address the challenge
regarding the coverage and representativeness of rules, we
extract the rules by abstracting exploits into common vul-
nerability patterns. These patterns are applicable to many
exploits and future or unknown attacks. Second, it is also
challenging to evaluate the accuracy of the rules. To the best
of our knowledge, there is no ground truth dataset of sensitive
data objects. Thus, to evaluate the accuracy and effectiveness
of our rule-based heuristics, we rely on the datasets from
the Linux Flaw Project [19], Juliet Test Suite [5, 47], and
five DOA exploits against real-world programs. We manually
investigate the datasets and exploits to identify vulnerable ob-
jects using knowledge from CVE description, exploits, online
sources, browsing code, and code comments.

We apply our rule-based heuristics to a program’s data flow
graph for identifying sensitive data objects. We implemented
these heuristics in LLVM as a set of analysis passes. For
performance comparison, we leverage the vanilla ASan [59]
and a DPP-enabled modified version to instrument all and
the prioritized data objects, respectively. We used the SPEC
CPU2017 benchmark suite, five real-world applications, one
library, and one lightweight benchmark to evaluate the perfor-
mance and execution time improvement due to DPP.

Our key contributions of this work are as follows.

• We present an adaptable and platform- or application-
agnostic DPP framework for automatically identifying
and prioritizing sensitive data objects. We define seven
rule-based heuristics for the identification and prioritiza-
tion (Section 3).

• Our evaluation shows that DPP can detect vulnerable
data objects from the Linux Flaw Project [19], Juliet Test
Suite [5,47], and five real-world programs by prioritizing
as few as only 3–4% of total data objects (Section 5.2).

• Our performance evaluation through the SPEC CPU2017
Integer benchmark suite shows that DPP improves per-
formance by ∼1.6x in terms of throughput and reduces
run-time by∼70% compared to ASan (Section 5.4). Our
code is available at https://github.com/salmanyam
/dpp-llvm

2 Background & Threat Model

In this section, we discuss different attack techniques for
DOAs and existing software- and hardware-based defenses
for them. We then discuss the threat model and assumptions.

2.1 Data-Oriented Attacks
The power of DOAs was not realized until recently when
control-oriented attacks have become unreliable due to many
practical software and hardware-assisted defenses. Chen et
al. first demonstrated the power of data-oriented attacks
in 2005 [10]. However, recently data-oriented attacks have
gained momentum and researchers have presented data-
oriented attacks in many widely-used applications including
server applications [30,31,43] and browsers [36,54]. Besides,
various automated data-oriented exploit generation tools such
as FLOWSTITCH [30], BOPC [35], STEROIDS [51], and
LIMBO [57] can automatically generate data-oriented attacks
with a little manual effort. We refer readers to [11, 12] for the
systematization of DOAs.

DOAs can be as simple as corrupting a variable. However,
they can be powerful enough to aid control-data attacks in the
presence of fully precise ‘static’ CFI [8] or achieve Turing-
complete expressiveness [31]. The key to DOAs is strategic
manipulations of two kinds of data: i) data variables or objects,
and ii) data pointers. The overwriting of security critical data
variables or objects leads to change program behavior or
inadvertent data leaks.

Data pointers as attack vectors (like code pointers [1, 61])
have recently gained attackers’ interest. DOP [31] used the
address of some non-control data pointers to select and stitch
DOP gadgets. Chen et al. [10] corrupted a data pointer in
the ghttpd HTTP server through a stack buffer overflow to
bypass security checks of input strings. COOP [56] utilized
a C++ object to hijack the virtual table pointer of a C++
object and constructed an exploit using the virtual functions
as gadgets. Heap-based exploitations such as the House of
Spirit attack [60] on Glibc also manipulate a data pointer
returned by malloc(). Besides, the corruption of data pointers
can leak information through software side channels such as
pointer probing [23] and timing side-channel attacks [58].

2.2 Defenses against Data-Oriented Attacks
Both software- and hardware-based mechanisms can protect
a program from data-oriented attacks through pointer-based

https://github.com/salmanyam/dpp-llvm
https://github.com/salmanyam/dpp-llvm

bound-checking [18,33,44], object-based bound checking [28,
59], pointer integrity [52], DFI [9, 63], and DSR [4, 7, 53].
Some defense mechanisms (e.g., YARRA [55], PT-Rand [17],
Orpheus [13], etc.) especially target data-oriented attacks.

On one hand, it is encouraging to have many defense
mechanisms to tackle DOAs. On the other hand, perfor-
mance and run-time issues with hardware extensions set
a high bar for deployment. For example, software-based
memory safety protection incurs run-time overhead rang-
ing from 48% to 116% [20, 21, 44–46], DFI overhead rang-
ing from 42% to 103% [9, 62] and pointer integrity around
20% [14]. HardBound [18] can lower the overhead to 9%
on average for pointers in C, but with architectural support.
Object-based approaches such as ASan can introduce up to
200% overhead [59]. Hardware-assisted AddressSanitizer
(HWASan) [28] improves performance via a slight compro-
mise in security. Memory Protection Extensions (MPX) can
incur on average 50% overhead [48] due to loading and stor-
ing bound metadata. Due to this high run-time overhead, most
of these protection mechanisms, in general, are not practical
to protect memory-resident data objects. Thus, it is necessary
to identify and prioritize the sensitive data objects to improve
these protection mechanisms and make them practical.

2.3 Threat Model

The goal of this work is to identify and protect critical and
sensitive data objects, variables, and pointers to prevent data-
oriented attacks. Thus, our threat model is on par and con-
sistent with the requirements and assumptions of existing
DOAs [10, 30, 31, 35, 57]. The key requirement of DOAs is
arbitrary manipulation or write capability of memory data
through one or more memory vulnerabilities to change a pro-
gram’s execution behavior or obtain sub-attack goals such as
gadget stitching or selection. Thus, in our threat model, we
assume a powerful adversary who can exploit vulnerabilities
to control or corrupt memory. We also assume the integrity
of program code that is protected by Data Execution Pre-
vention (DEP) or W⊕X. Protections such as Address Space
Layout Randomization (ASLR) [66] or variations [27,29,38],
full or partial Relocation Read-Only, Code-Pointer Integrity
(CPI) [14, 32, 33, 39, 52], CFI [26, 42, 68], and memory pro-
tection can be present in a system to prevent control-oriented
attacks. Since we rely on the existing defenses (ARM PA [52],
Intel MPX [33], Softbound [44], ASan [59], etc.) for pro-
tecting sensitive or critical memory data, we assume these
defenses are correct and secure. For example, the metadata
used by Softbound [44] or ASan [59] is protected or cannot
be manipulated. Besides, we assume that attackers have no
access to higher privilege levels, or the underlying operating
systems are safe and protected. For example, the kernel stores
the PA keys, so we assume that attackers cannot access the
keys.

3 Data and Pointer Prioritization

Data and Pointer Prioritization (DPP) is a generic framework
for automatically identifying and prioritizing sensitive data
objects. Both identifying the sensitive data objects and priori-
tizing them are challenging tasks. We start this section with
the definition of sensitive data objects and summary of DPP’s
operations. We then elaborate each operation of DPP as well
as our rule-based heuristics for prioritization.

Sensitive data object. A program can have many data ob-
jects that are possibly attacker-controlled through external
manipulation. However, all attacker-controlled objects may
not be equally useful for attackers. Data objects or pointers
that allow attackers to change a program flow or select their
chosen execution path are useful. We call such prioritized
input-dependent objects, and pointers to them, sensitive.

Our DPP framework automatically identifies and ranks
sensitive data objects. DPP has two major operations: i) taint–
tracking to identify possibly attacker-controlled data objects,
and ii) detection and prioritization of objects that might fa-
cilitate exploitation if corrupted by an attacker. We utilize
system or library I/O functions that receive input from exter-
nal sources (e.g., network, file system, or user input) as initial
taint sources. Since we consider reading from file system as
external input, reading from any configuration files is also
considered as external input. For example, Listing 1 shows
the overwrite of a user’s ID (pw->pw_uid). A malicious user
can override this ID with a vulnerability in the program, to
gain root privilege [10]. To capture such vulnerabilities, we
consider any file system objects, including configuration files,
to be outside the Trusted Computing Base (TCB) and mark
any data objects read from them as tainted. In this case, we
taint the user’s ID, i.e., pw->pw_uid since the value is set
from a configuration file.

1 FILE ∗ getdatasock(...) {
2 ...
3 seteuid(0);
4 setsockopt(...);
5 ...
6 seteuid(pw−>pw_uid);
7 ...
8 }

Listing 1: Overwriting user’s ID to gain root privilege [10].

After identifying the taint sources, we then propagate the
taint throughout the program to identify any data objects
with data-dependence on possibly attacker-controlled inputs.
From the set of tainted objects, we use rule-based heuristics
to prioritize those that are sensitive. We can then protect these
sensitive objects through memory-protection defenses such
as ASan [59], Softbound [44], CETS [45], Intel MPX [33], or
pointer integrity schemes such as ARM PA [52].

3.1 Rule-based Prioritization

DPP uses rule-based heuristics to automatically detect sensi-
tive data objects that could potentially lead to vulnerabilities.
The rules are data-driven and solidly based on a large number
of facts extracted from existing exploits and Common Vulner-
abilities and Exposuress (CVEs). We analyzed various types
of data-oriented exploits demonstrated in security literature
that corrupt data objects and pointers. We also carefully ex-
amined CVEs related to memory corruption vulnerabilities.
We categorize the type of these corruptions into four cate-
gories: i) Control alteration – where the corruption of data
objects and their pointers aims to alter a program behavior,
ii) Proximity based – where pointers aim to corrupt nearby
buffers, iii) Erroneous – where data pointers have bad casting,
violate intended pointer semantics, and cause memory corrup-
tions; or data objects have erroneous bound conditions, and
iv) Unguarded – where pointers are allocated as unbounded.

Based on these corruptions from at least nine data-oriented
exploits [10, 23, 30, 31, 58] and 20 CVE disclosures (e.g.,
CVE-2001-0820, CVE-2006-5815, CVE-2017-9430, CVE-
2018-6151, CVE-2018-10111, and CVE-2021-23017), we
formulate seven heuristic rules shown in Table 1. These are
further categorized on whether the rule is for Allocation-based
Protection (AP) or Pointer-integrity Protection (PP). AP en-
sures the integrity of data objects, while PP safeguards the
integrity of pointers to these objects. For instance, Rule 6
prioritizes objects that lack bounds-checking, and is therefore
applicable to AP but not PP. We also categorize them into
four categories based on their actions (Table 1).

Table 1: We use exploit- and vulnerability-driven heuristics to
realize rules for identifying and prioritizing input-dependent
data or pointers.

Rule # Category Short Description Protection Example CVE

Rule 1
Control
alteration

Data objects/pointers in predicates
may alter program behavior PP/AP CVE-2006-5815

Rule 2
Control
alteration

Data pointers used in loops may
alter program flow or leak
sensitive information

PP/AP CVE-2006-5815

Rule 3
Proximity-
based

Data pointers that are near to
data buffers PP/AP CVE-2002-1496

Rule 4
Proximity-
based

Data objects or pointers used
in vulnerable functions AP CVE-2021-31226

Rule 5 Erroneous
Data pointers that have been cast
to different types AP CVE-2018-6151

Rule 6 Erroneous
Data objects that have
out-of-bound access AP CVE-2021-21773

Rule 7 Unguarded
Pointers that have
unbounded allocations AP CVE-2020-11612

Rule 1 prioritizes allocations and pointers that are used as
predicates for conditional execution and could thus allow an
attacker to manipulate the control-flow of a program. Listing 2
shows an example from the ProFTPD DOP attacks [31] where
the pointers cp and pbuf are dependent on user input and are
used in the condition on Line 10.
Rule 2 prioritizes objects and pointers used in a loop. List-
ing 3 shows an example from a DOP attack on ProFTPD

1 char ∗sreplace(char ∗s, ...) { //char ∗s is the taint source in this function
2 ... // taint flow: ∗s −> ∗src −> ∗pbuf and ∗cp
3 char ∗src = s, ∗cp, ∗∗rptr, ∗pbuf = NULL;
4 size_t rlen = 0, blen; cp = buf;
5 ...
6 while(∗src) {
7 //pbuf and cp pointers are set based on the user−provided ∗src
8 }
9 ...

10 if((cp − pbuf + 1) > blen) { // off−by−one error
11 cp = pbuf + blen − 1; ...
12 } /∗ Overflow Check ∗/
13 ∗cp++ = ∗src++;
14 ...
15 }

Listing 2: Usage of data pointer cp and pbuf in the
condition at Line 10 in ProFTPD v1.3.0 (CVE-2006-
5815).

v1.3.0 [31], where the manipulation of pointer src (i.e., for(;
*src && n > 1; n--) at Line 3 in Listing 3) can control
the execution of a loop to produce DOP assignment gadgets at
Line 4 (i.e., *d++ = *src++). This loop-based heuristics cov-
ers such custom strcpy-type functions, but also other common
patterns that utilize loops to stitch and select gadgets used in
DOP. Data-manipulation within loops has also been used to
leak confidential information, e.g., to break ASLR [23, 58].

1 char ∗sstrncpy(char ∗dest, const char ∗src, size_t n) {
2 register char ∗d = dest;
3 for (; ∗src && n > 1; n−−)
4 ∗d++ = ∗src++;
5 }

Listing 3: Loop manipulation for DOP [31] gadgets in
ProFTPD v1.3.0 through data pointer overwrite (CVE-
2006-5815).

Rule 3 detects objects that include an addressable buffer—
typically an array—that is followed by a pointer. The exploita-
tion of this pattern is attractive for two reasons. First, because
the overflow and target are in the same buffer, there is no
dependence on the overall memory layout of the program.
And second, due to limitations of allocation-based bounds
checking [44], such overflows can be performed even in the
presence of common memory-protection schemes (such as
the allocation-based ASan [59]). Listing 4 shows an example
of such an exploitable code pattern.

1 struct mystruct_s {
2 char buffer[64]; // Can overflow other fields without violating allocation

boundary
3 void (∗f_ptr)();
4 };

Listing 4: Example of Rule 3, where a buffer within a
structure could overwrite a sensitive pointer (f_ptr) within
the same structure.

Rule 4 prioritizes data objects used by vulnerable library
functions such as strcpy(), memcpy(), gets(), strncpy(), and
sprintf(). Listing 5 shows a vulnerability (CVE-2017-9430)
in dnstracer v1.9 caused by a vulnerable strcpy call at Line 4.

1 int main(int argc, char ∗∗argv) {
2 while ((ch = getopt(argc, argv, "4cCoq:r:S:s:t:v")) != −1) {...}
3 ...
4 strcpy(argv0, argv[0]); // argv[0] depends on user input!
5 ...

Listing 5: Rule 4 detects the use of commonly exploited
functions, such the call to strcpy() on Line 4.

Rule 5 prioritizes data pointers that have been cast from one
type to another type. Incorrect casts can cause type-confusion
attacks that allow over-reads or -writes by accessing an object
of incorrect type, or incorrect function calls by invoking meth-
ods of a wrong type. For example, Out-of-Bounds (OOB)
memory read (CVE-2018-6151) happens in Google Chrome
version prior to 66.0.3359.117 due to a bad cast where an
object cast to an unexpected type causes a bad cast.
Rule 6 detects memory dereferences that could lead to an
OOB due to pointer arithmetic or incorrect indices that cannot
be statically shown safe. A simple example of OOB access is
to read from or write to an array beyond its allocation range.
Such vulnerabilities exist in real-world applications such as
in Nginx v0.6.18 – v1.20.0 where an OOB write happens due
to an off-by-one error (CVE-2021-23017).
Rule 7 prioritizes objects that are allocated to a size without
bounds checked. In Listing 6, Line 6 shows an example of an
allocation of unbounded size in the GEGL version 0.3.32 that
could lead to a Denial-of-Service (DOS) attack by exhausting
all memory (CVE-2018-10111).

1 static gboolean render_rectangle (GeglProcessor ∗processor) {
2 ...
3 GeglRectangle ∗dr = processor−>dirty_rectangles−>data;
4 ...
5 guchar ∗buf; // Create pointer for buffer
6 buf = g_malloc (dr−>width ∗ dr−>height ∗ pxsize); // Allocate buffer
7 g_assert (buf);
8 ...
9 }

Listing 6: Rule 7 prioritizes unbounded allocations, such as
this example from CVE-2018-10111 where an unbounded
allocation in GEGL leads to DOS.

There are two main challenges to applying the rule-based
heuristics for identifying sensitive memory objects. First, it is
difficult to know the complete and representative set of rules.
Second, DPP needs an efficient technique to track the data
flow. We discuss these challenges as follows.
Ch1. Completeness and representativeness of the rules. An-
ticipating future attacks is difficult as attackers’ capabilities
constantly evolve, making it challenging to ensure the com-
pleteness of rule-based heuristics. A minor change in the

attack pattern can render signature-based or end-to-end rules
ineffective. To enhance rule representativeness, we extract
them by identifying key exploit strategies such as manipula-
tion of conditions and loops, positional corruptions by data
pointers, vulnerable library functions, and unbounded allo-
cations. Our identified strategies have been experimentally
confirmed to work well (Section 5), but additional rules can
be easily added to our set for future attacks.

Ch2. Data flow tracking. Since DPP aims to apply the
rules to input-dependent data objects, it needs to track the
flow of data objects and their pointers efficiently throughout
a program, starting from the input sources. A crucial task is
the determination of the points-to set of a pointer. Luckily,
we have existing techniques to perform this heavy lifting task.
In this work, we use Static Value Flow (SVF) [64] with An-
derson [2] pointer analysis to perform the data flow tracking
(Section 3.2). We use SVF as this graph-based implementa-
tion is efficient to traverse and query.

3.2 Data Flow Tracking
The purpose of data flow tracking is to identify all attacker-
controlled data (i.e., all the reachable data from external in-
puts) and taint them. We apply the rule-based heuristics on
a tainted data flow graph of a program. To construct the data
flow graph, we utilize the interprocedural SVF analysis [64].
SVF performs its analysis on the LLVM Intermediate Rep-
resentation (IR) to construct the Static Value Flow Graph
(SVFG). SVF first converts LLVM IR instructions into a Pro-
gram Assignment Graph (PAG). A PAG has two types of
nodes: i) Value Pointer Node (ValPN), and ii) Object Pointer
Node (ObjPN). A ValPN represents an LLVM value that is a
pointer and an ObjPN represents an abstract memory object
(i.e., the address-taken variable of an IR pointer). An edge
in the PAG represents the constraints between nodes by cap-
turing the address-of, load, store, and copy associations.
To perform pointer analysis, SVF starts with a copy of PAG
called the constraint graph. SVF solves the constraints in the
graph by converting each load and store constraints to copy
constraints. Once the constraint resolution is done, SVF then
constructs the SVFG. To do so, SVF annotates the potential
use of a variable at loads, potential definitions and uses of
the variable at stores, inter-procedural uses and definitions at
call sites, and parameter passing or return at function entries
or exits, where the variable is pointed by a top-level pointer.
SVF obtains the points-to set of a top-level pointer using An-
dersen’s points-to analysis 3 [2]. Finally, SVF constructs the
SVFG by converting all the address-taken variables to Single
Static Assignment (SSA) form, merging multiple definitions
using phi instructions, and connecting the definition-uses for
each SSA variable. We refer readers to [64] for details.

3Practical considerations must be made when choosing a points-to anal-
ysis technique considering the trade-offs between speed and precision. We
evaluate and discuss these trade-offs in Section 5.

3.3 Taint Analysis
Our taint analysis identifies all the taint sources from a pro-
gram and propagates the taints throughout the program con-
sidering simple and complex taint propagation scenarios.
Identification of tainted sources. Vulnerable data objects or
pointers must depend on external input channels (e.g., net-
work, file system, or user input) so they are susceptible for
external manipulation. These correspond to standard library
functions such as read, recv, getc, recvmsg, scanf , fscanf ,
fread, and fgets. To optimize analysis, we also identify com-
mon wrapper functions that always lead to input functions
in the standard libraries. We refer to both standard library
functions and common wrapper functions as input-reading
functions. We also consider the main function as an input-
reading because its parameters are user-controlled. For any
input-reading function, we mark all non-constant input values
and the return value as taint sources. If a parameter or returned
value is a pointer, then the tainting process starts from the
points-to set of the pointer parameter or returned value.
Propagation of tainted data. We propagate the taint through
the SVFG by traversing all successors of a tainted node. How-
ever, we need to address the following limitations of the SVFG
for the completeness of the taint propagation process:

1. SVFG does not taint dynamically allocated memory
when the arguments passed to the allocator are tainted.

2. SVFG does not taint the underlying object when a
pointer is indexed with a tainted value or a result of
pointer arithmetic with tainted inputs.

3. SVFG does not track when a function (e.g., memcpy)
stores value from one parameter to another.

To address the first limitation, we simply taint the return
result of an allocation function if the arguments are tainted.
To address the second, we identify all the address-taken data
objects and one or more index-variables or pointers used to
access the data objects. If one or more index-variables or
pointers are tainted, we taint the data objects and obtain the
points-to sets of the newly tainted data objects. If any point-
ers in the obtained points-to sets are not tainted, we start the
tainting process for the pointer. We address the third by iden-
tifying all function calls that store the value of their second
parameter to the first parameter. Such function call instruc-
tions include memcpy, memmove, strcpy, strncpy, strcat, and
their variations. If the second parameter is tainted, then we
taint the first parameter and its points-to set. Algorithm 1 in
Appendix A.1 shows the pseudocode of the tainting process
in the SVFG.

As mentioned above, we apply the rule-based heuristics
on a tainted data flow graph. We discuss this application of
rules on a tainted graph in Section 4. We also demonstrate
in Section 5 that these rules are simple, but powerful for
coverage, security, and performance.

4 Implementation

We implemented DPP 4 in LLVM 12. To perform the pointer
analysis and data-flow construction, we utilize the SVF 5 [64]
tool. We performed our analysis on top of the LLVM bit-
code. We obtained a single whole program bitcode file using
the whole program LLVM tool 6. We then apply the above
mentioned rules on a tainted SVFG to identify sensitive data
objects or pointers. When a rule flags a pointer, our technique
also flags the data object where the pointer points to.

To discuss the implementation of the rules, we use an ex-
ample program in Figure 1. Figure 2 shows the SVFG of the
example program in Figure 1. The example program has three
memory objects (two local and one dynamic). The correspond-
ing memory allocation nodes in the SVFG are the hexagonal
nodes 1 , 5 , and 27 (Figure 2). The rectangular nodes show
how the values of the memory objects flow through different
IR instructions.

4.1 Rule Implementation

Each rule is implemented as a separate analysis pass that
is then collected to a joint analysis result. This facilitates
the addition of new emerging exploitation patterns without
additional changes to protection that rely on the prioritization
for selectively instrumenting code.

Rules 1, 2, 4, and 5 utilize the SVF analysis to identify
tainted address-taken pointers. We then extract the alias set
of those pointers. For example, one of the tainted pointers in
Figure 2 is node 5 , which has an alias set consisting of nodes
{5, 11, 22}. We then use the LLVM’s built-in definition-use
chains to create a list of all uses involving any pointer in the
alias set. In the case of node 5 , this gives us nodes {5, 6, 7,
8, 11, 12, 13, 14, 22, 25, 26}. Once we get this usage list, we
apply the following techniques to apply Rule 1, 2, 4, and 5.

• To implement Rule 1, i.e., usage of data objects and
pointers in predicates, we check if any node from the
usage list has a compare instruction implying that it can
alter control-flow or data.

• To implement Rule 2, i.e., usage of data pointers in loops,
we check if any node from the usage list has a load/s-
tore/compare instruction and has been used in a loop’s
predecessor, header, and latch. We analyze loops using
the LLVM LoopAnalysis 7.

• To implement Rule 4, i.e., usage of data pointers in vul-
nerable functions, we check if any arguments of a vul-
nerable function are from the usage list.

4available at https://github.com/salmanyam/dpp-llvm
5https://github.com/svf-tools/SVF
6https://github.com/travitch/whole-program-llvm
7https://llvm.org/doxygen/classllvm_1_1LoopAnalysis.html

https://github.com/salmanyam/dpp-llvm
https://github.com/svf-tools/SVF
https://github.com/travitch/whole-program-llvm
https://llvm.org/doxygen/classllvm_1_1LoopAnalysis.html

1 void testcase(int ts) {
2 char buf[10];
3
4 char ∗s = (char ∗) malloc(ts ∗ sizeof(char));
5 for(int i=0; i < ts; i++) s[i] = i + ’0’;
6
7 if (s[0]==’a’) printf("%d\n", s[ts−1]);
8
9 fscanf(stdin, "%s", s); //’s’ marked as tainted

10 memcpy(buf, s, strlen(s)); // sink
11 printf("%s\n", buf);
12 }
13
14 int main(int argc, char ∗∗argv) {
15 int size;
16 scanf("%d", &size); //’size’ marked as tainted
17 testcase(size);
18
19 return 0
20 }

Figure 1: Example C program. Figure 2: SVFG of the motivating example. gep ib→ getelementptr inbounds.

• To implement Rule 5, i.e., possibly unsafe pointer casts,
we check if any node from the usage list is a bitcast
that is used to realize casts in the LLVM IR. We filtered
out trivial casting like from and to char *, and any non-
pointer casts. We check the incompatibility of checking
the size of the pointed-to source and destination types
based on the data layout information in the LLVM IR.

We implement Rule 3, i.e., data pointers possibly vulnera-
ble to inter-allocation overflows, by checking all the tainted
stack allocations (alloca instructions) in a function and all
the tainted global variables for structures that contain arrays
followed by pointers. When found, we mark the correspond-
ing pointer as sensitive.

To implement Rule 6, i.e., on possible OOB access, we
apply three optimizations to filter out safe tainted objects or
pointers from all the tainted objects and pointers. First, we
only consider operands to load, store, and call SVF nodes
that deal with memory accesses. Second, we apply LLVM’s
stack safety analysis 8 to filter out allocations that are free
from memory access bugs. Third, we ignore nodes that we can
prove statically safe using LLVM’s ObjectSizeOffsetVisitor 9

class. We flag the remaining operands as sensitive.
To implement Rule 7, i.e., unbounded memory allocations,

we first use SVF to retrieve the SVFG nodes corresponding to
dynamic allocations. We filter out the allocation nodes that are
untainted or in dead functions. Once we get the allocation sites
or nodes in the SVFG, we obtain the corresponding nodes in
the Interprocedural Control-Flow Graph (ICFG). We perform
a backward search from the obtained ICFG nodes to fetch
cmp instructions to check if the argument used in a memory

8https://llvm.org/docs/StackSafetyAnalysis.html
9https://llvm.org/doxygen/classllvm_1_1ObjectSizeOffset

Visitor.html

allocation function is bounded. However, we need to address
three key challenges: i) how to deal with path explosion due
to the backward search, ii) how to deal with loops in the ICFG,
and iii) how to determine the right cmp instruction(s) that are
relevant to the argument of a memory allocation function.

We address the path explosion issue by parameterizing how
many paths and how far in a path to explore. We remove all
the edges that create loops in the ICFG. We address the third
challenge by determining if a cmp instruction and the argu-
ment of an allocation function have a common ancestor in
the SVFG. The key idea is that the argument and cmp instruc-
tion will be the descendants of a node if the cmp instruction
operates on the argument. We refer readers to the detailed dis-
cussion of how we implement the common ancestor solution
in SVFG in Appendix A.2.

5 Evaluation

We evaluate DPP by answering the following questions:

1. How capable is DPP for prioritizing security critical data
objects? (Section 5.1)

2. How effectively can DPP rank sensitive data objects?
What is the impact of individual rules on the accuracy
of the prioritization? (Section 5.2)

3. How sensitive are the leftover data objects? (Section 5.3)

4. How much performance improvement can DPP enable?
How are the DPP’s end results amenable for implement-
ing a live defense? (Section 5.4)

https://llvm.org/docs/StackSafetyAnalysis.html
https://llvm.org/doxygen/classllvm_1_1ObjectSizeOffsetVisitor.html
https://llvm.org/doxygen/classllvm_1_1ObjectSizeOffsetVisitor.html

Table 2: Linux Flaw Project [19].

CVE Type Application ASan
(default)

ASan
+ DPP

CVE-2006-0539 heap-buffer-overflow fcron-3.0.0 X X
CVE-2006-2362 buffer-overflow binutils-2.15 X X
CVE-2009-1759 stack-overflow ctorrent-dnh3.3.2 X X
CVE-2009-2285 heap-buffer-overflow tiff-3.8.2 X X
CVE-2010-2481 out-of-order tiff-3.9.2 × ×
CVE-2010-2482 null-pointer-dereference tiff-3.9.2 X X
CVE-2013-4243 heap-buffer-overflow tiff-4.0.1 X X
CVE-2013-4473 stack-smashing poppler-0.24.2 X X
CVE-2013-4474 stack-buffer-overflow poppler-0.24.2 X X
CVE-2014-1912 heap-buffer-overflow Python-3.1.5 × ×
CVE-2015-8668 heap-buffer-overflow tiff-4.0.1 X X
CVE-2016-10095 stack-buffer-overflow tiff-4.0.7 X X
CVE-2016-10271 heap-buffer-overflow tiff-4.0.7 X X
CVE-2017-12858 heap-use-after-free libzip-1.2.0 X X
CVE-2018-9138 stack-overflow binutils-2.29 X X

5.1 Security Evaluation

To evaluate the capability of DPP to prioritize sensitive data
objects and their pointers, we run DPP on the Linux Flaw
Project [19] and Juliet Test Suite [5,47]. We only consider the
CVEs and test cases from the Linux Flaw Project and Juliet
Test Suite which are related to memory errors. We then utilize
ASan to protect only the prioritized data objects to see if we
can detect all the memory errors. If DPP does not prioritize
a sensitive data object that is related to a memory error from
the Linux Flaw Project or Juliet Test Suite, then ASan does
not protect that data object. Hence, we cannot detect that
memory error. Table 2 and Table 3 show the results for DPP’s
prioritization capability for the Linux Flaw Project and Juliet
Test Suite, respectively. To reproduce all the memory errors
in the Linux Flaw Project (Table 2), we use Ubuntu 18.04.
For each of the five Common Weakness Enumeration (CWE)
categories for the Juliet Test Suite (Table 3), we select test
cases that depend on external inputs.

As shown in Table 2 and Table 3, ASan with DPP can de-
tect all the memory errors from both datasets the same as the
default ASan can. However, ASan with DPP can detect mem-
ory errors by only protecting the prioritized data objects. This
evaluation demonstrates the capability of DPP for prioritizing
security-critical data objects.

Our key evaluation datasets (i.e., the Linux Flaw Project
and Juliet Test Suite) are completely distinct from our rule
dataset. Our rules do not have any knowledge about the pro-
grams in the Linux Flaw Project or Juliet Test Suite. We eval-
uated DPP utilizing 11 unique programs from the Linux Flaw
Project and 720 test cases from the Juliet Test Suite. For san-
ity checking in terms of accuracy and effectiveness, we also
include the exploit programs (i.e., the rule dataset) in some of
our evaluations (e.g., Table 4). Thus, the evaluation datasets
are distinct from the rule dataset and our evaluation does not
suffer from overfitting (more discussion on the generalization
of our rules in Section 6).

Table 3: Juliet Test Suite [5, 47].

Type Total
tested cases

ASan
(default)

ASan
+ DPP

CWE121_Stack_Based_Buffer_Overflow 144 144 144
CWE122_Heap_Based_Buffer_Overflow 144 144 144
CWE124_Buffer_Underwrite 144 144 144
CWE126_Buffer_Overread 144 144 144
CWE127_Buffer_Underread 144 144 144

5.2 Prioritization Efficacy

Efficacy of any memory protection scheme is challenging to
evaluate because new attacks are a priori unknown [22, 65].
However, we can evaluate DPP against known vulnerabili-
ties. This shows that the rule-based approach of DPP can be
used to cover known exploitation techniques, and so, suggest
that it can be extended to cover new techniques uncovered
in the future. To evaluate the efficacy of DPP, i.e., how well
DPP can rank sensitive data objects, we identify the vulner-
able data objects from the Linux Flaw Project [19], Juliet
Test Suite [5, 47], and five DOA exploits against real-world
programs. The vulnerabilities cover both C and C++ pro-
grams and five CWE categories. We manually investigate
the datasets and exploits to identify vulnerable objects using
knowledge from CVE description, exploits, online sources,
browsing code, and code comments. Table 8 in Appendix A.3
shows the vulnerable data objects or pointers extracted from
the datasets and exploits.

Table 4 shows the programs and test cases used in our eval-
uation, including the number of all and prioritized data objects
in these programs and test cases. The first column of Table 4
shows the names of the vulnerable data objects (Vobjs) 10. The
fifth column shows the percentage of prioritized data objects
with respect to the number of all data objects. On average, the
percentages of the prioritized data objects for the Linux Flaw
Project [19] and DOA Exploit Dataset is ∼41% and ∼31%,
respectively. DPP considers the rest∼59% for the Linux Flaw
Project and ∼69% for the DOA Exploit Dataset as safe, in-
dicating they are either not manipulatable or if manipulated,
unlikely to facilitate exploitation. Hence, DPP filters out these
data objects. The percentage of the prioritized data objects in
the Juliet Test Suite 11 [5, 47] is much lower than the Linux
Flaw Project [19] or DOA Exploit Dataset because the test
cases in the Juliet Test Suite are much smaller than the other
two datasets. The Juliet Test Suite has small programs de-
signed to evaluate accuracy of a static analysis where the test
cases are implemented by adding minor changes to a small
base program. Most test cases follow a similar format, and a
few include data objects that have external dependencies.

10For locations of these vulnerable data objects in the program, refer to
Table 8 in Appendix A.3.

11The numbers of total data objects, prioritized data objects, and the rank
of vulnerable objects for each CWE category are presented in Table 4 as the
average of the total number of test cases in that CWE category.

Table 4: The number and percentage of top k prioritized objects needed for detecting vulnerable data objects (Vob j) from the
Linux Flaw Project [19], Juliet Test Suite [5, 47], and five DOA exploits.

Vulnerable data
object (Vob j)

Program
name

of data
objs

of prio.
data objs

% of prio.
data objs

Rank of Vob j in
prio. objs (kth)

% of top k
w.r.t. prio. objs

% of top k
w.r.t. all objs

Linux Flaw Project
char *argv[] fcron-3.0.0 110 31 28% 14 45% 13%
char sym[17] binutils-2.15 4664 2349 50% 43 2% 1%
char path[MAXPATHLEN] ctorrent-dnh3.3.2 1379 672 49% 8 1% 1%
TIFF* tif tiff-3.8.2 1405 731 52% 186 25% 13%
TIFF* tif tiff-3.9.2 1445 761 53% 37 5% 3%
TIFF* tif tiff-4.0.1 1857 806 43% 23 3% 1%
char pathName[4096]
char *destFileName poppler-0.24.2 11539 3293 29% 19 1% 0.2%

TIFF* tif tiff-4.0.1 1857 806 43% 23 3% 1%
zip_buffer_t *buffer libzip-1.2.0 878 255 29% 15 6% 2%

Average→ ∼41% ∼10% ∼4%

DOA Exploit Dataset
char *ptr ghttpd-1.4 77 14 18% 4 24% 5%
struct passwd *pw wu-ftpd-2.6.0 590 378 64% 34 10% 6%
char *src
char *cp proftpd-1.3.0 5070 1313 26% 236

28
18%
2%

5%
1%

apr_array_header_t *log_format; httpd-2.4.7 6754 587 9% 77 13% 1%
char *pPostData; nullhttpd-0.5.0 100 37 37% 1 2% 1%

Average→ ∼31% ∼12% ∼3%

Juliet Test Suite
int buffer[10] CWE121 27 3 11% 2 67% 7%
int * buffer CWE122 28 3 11% 1 33% 4%
int buffer[10] CWE124 27 3 11% 2 67% 7%
int buffer[10] CWE126 27 3 11% 2 67% 7%
int buffer[10] CWE127 27 3 11% 2 67% 7%

Average→ ∼11% ∼60% ∼6%

We also rank the prioritized data objects based on the num-
ber of rules they match. If ties occur in the ranking of data
objects, we use the number of pointers to a data object to
break the ties. This ranking allows us to understand the effi-
cacy of DPP for prioritizing Vobjs. To estimate the efficacy,
we determine the rank of each of the Vobj in our dataset indi-
cated in the first column of Table 4. The sixth (6th) column in
Table 4 shows the rank (k) of a Vobj within the prioritized data
objects of the program the Vobj belongs to. For example, the
rank of the data object pointed by char *ptr in ghttpd-1.4
is four (k = 4), i.e., char *ptr is the fourth (4th) data object
in the ranked and prioritized data objects. The rank four of
char *ptr indicates that the top four prioritized data objects
include the char *ptr Vobj. We compute the percentages of
this top k data objects with respect to the prioritized and all
data objects in a program or test case. The seventh and eighth
columns of Table 4 show the top k percentages.

On average, we noticed that DPP prioritizes 31-41% of all
data objects (excluding Juliet). However, the prioritized data
objects are also sorted based on how many rules flag the data
objects. After the sorting, we observed that all vulnerable data
objects are found within the top 10-12% of the prioritized
data objects. These top 10-12% of the prioritized data objects

are 3-4% of all data objects. For the Juliet Test Suite [5, 47]
test cases, we found that the Vobjs are in the top 60% of the
prioritized data objects which are in the top 6% with respect
to all data objects. The top k percentage is higher (60%) for
the Juliet Test Suite compared to the other two due to a few
objects in Juliet with external dependencies indicating a few
numbers of objects to prioritize.

To understand the impact of individual rules on the accu-
racy of the prioritization, we perform an experiment using the
Linux Flaw Project [19] dataset to see what rules prioritize
the Vobjs. Table 5 shows the result. As shown in the table, we
noticed that Rules 1, 2, 4, and 6 have the most impact on pri-
oritizing the Vobjs from the Linux Flaw Project dataset. The
rules capture the condition and loop manipulation, exploita-
tion of data pointers through vulnerable library functions, and
out-of-bound access. These four rules cover the three (con-
trol alteration, proximity based, and erroneous) of the four
categories of the rules. The result indicates the generality and
applicability of some rules over others due to the nature of
the vulnerabilities that make the data objects vulnerable. The
seemingly less impactful rules are interesting as they could
indicate some classes of attacks are just harder to exploit. This
also indicates a potential limitation of our dataset as we need

Table 5: Impact of individual rules on the accuracy of prioritization.

CVE Data Variable Program Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7
CVE-2006-0539 char *argv[] fcron-3.0.0 X X × X × × ×
CVE-2006-2362 char sym[17] binutils-2.15 X X × X × X ×
CVE-2009-1759 char path[MAXPATHLEN] ctorrent-dnh3.3.2 X X × X × X ×
CVE-2009-2285 TIFF* tif tiff-3.8.2 X × × × × × ×
CVE-2010-2482 TIFF* tif tiff-3.9.2 X × × X × × ×
CVE-2013-4243 TIFF *tif tiff-4.0.1 X × × X × × ×
CVE-2013-4473 char pathName[4096] poppler-0.24.2 X X × X × X ×
CVE-2013-4474 char *destFileName poppler-0.24.2 X X × X × X ×
CVE-2015-8668 TIFF *tif tiff-4.0.1 X × × X × × ×
CVE-2017-12858 zip_buffer_t *buffer libzip-1.2.0 X X × X × X ×

a broader benchmark to realize the usefulness of all rules.

5.3 Sensitiveness of Leftover Data Objects
To evaluate the data objects left unprioritized by DPP are
indeed insensitive, we performed our evaluation through case
studies. We manually analyzed ghttpd-1.4 and nullhttpd-0.5.0.
We choose these two applications because these applications
are small compared to other applications. We performed the
analysis in two steps: i) analyzing all untainted data objects,
and ii) analyzing all tainted but unprioritized data objects.
Our analysis shows that the rest 63 data objects (out of 77) in
ghttpd-1.4 are untainted either because they are constant or
derived from another constant. These data objects are used
to store file names, server names, document roots, directory
headers, mime types, string formats, dates, and time. We ob-
served similar scenarios in nullhttpd-0.5.0. A total of 56 out of
100 data objects were untainted due to their use in storing lo-
cal/gm time and constant. Seven data objects were tainted due
to their use in fopen function. However, we found that these
objects are also derived from constants as these were just file
names and had no uses that satisfy our rules. It is important
to note that DPP marks the content of a file as sensitive even
if the file name object is left untainted or unflagged.

5.4 Performance Evaluation
We use ASan 12 [59] for evaluating the performance impact
of our prioritization. ASan detects memory-related errors by
instrumenting data objects by inserting extra code and enforc-
ing the instrumented code through a runtime library. It can
detect various memory-related errors such as out-of-bounds
access, use-after-free, use-after-return, use-after-scope, and
double-free, and invalid-free. Though ASan is primarily used
as a sanitizer to catch bugs during testing rather than as a
practical mitigation practice due to its high performance or
memory overhead and security issues with shadow memory
protection, we chose ASan over the other live defenses due
to its compatibility and stability, and because it still can give
us a good estimation of the comparative performance im-
provement due to our prioritization. To evaluate such perfor-
mance improvement, we use the SPEC CPU2017 benchmark

12https://clang.llvm.org/docs/AddressSanitizer.html

as well as five real-world applications, one library, and one
lightweight benchmark. We compare the throughput, run-time,
and benchmark specific metric (e.g., CPU Index) of the bench-
mark or applications with vanilla ASan and DPP-enabled
ASan. To implement the DPP-enabled ASan, we modify the
vanilla ASan to enable the option to instrument only the pri-
oritized data objects.
Performance improvement of the SPEC CPU2017 bench-
mark due to DPP. To evaluate the performance improvement
through the SPEC CPU2017 benchmark, we utilize the Inte-
ger benchmark suite. The Integer benchmark suite contains
10 benchmark programs. Out of these 10 benchmarks, one
benchmark (648.exchange2_s) is written using Fortran and
DPP has no impact on the benchmark. Thus, we discarded
648.exchange2_s and conducted our experiments on the re-
maining nine benchmarks.

We prepared three versions of each of the benchmark pro-
grams: i) a baseline version without any instrumentation,
ii) an asan version instrumented with the default ASan, and
iii) an asan+dpp version instrumented with the DPP-enabled
ASan. We ran each version of the benchmark multiple times
and measured the throughput. We used Ubuntu 18.04 with
16 CPUs and 64 Gigabytes of memory. We used four CPU
threads to run each benchmark. Figure 3 shows the percentage
of throughput of each benchmark with asan and asan+dpp
with respect to the baseline benchmark. That means we nor-
malize the throughput of asan and asan+dpp versions of the
benchmarks with respect to the throughput of the baseline
benchmarks and compute the percentages.

Figure 3: Throughput (% with respect to the baseline) of
SPEC CPU2017 benchmarks fully instrumented with ASan
(asan) and with DPP-prioritized ASan (asan+dpp).

As can be seen from Figure 3, the percentage of throughput
is more than 80% in five out of nine benchmarks with the DPP-
enabled ASan (i.e., asan+dpp) versions. Three of them have
throughput close to the baseline throughput. On average, the
throughput for benchmarks with asan+dpp is ∼83%. On the
other hand, the average throughput for benchmarks with asan
versions is ∼53%, indicating ∼1.6x performance improve-
ment by DPP-enabled ASan compared to the default ASan.
This result also indicates that ASan reduces the throughput
by ∼47% on average compared to the baseline, where the re-
duction is only around ∼17% with DPP-enabled ASan. This
result implies that DPP-enabled ASan incurs 30% less over-
head than what the default ASan does. This improvement of
30% overhead reduction by DPP-enabled ASan is∼64% with
respect to the overhead of the default ASan.
Impact of DPP on workload run-time. To observe DPP’s
impact on workload run-time, we also measure the total work-
load run-time for three versions (i.e., baseline, asan, and
asan+dpp) of each benchmark in SPEC CPU2017. Figure 4
shows the cumulative workload run-time for the baseline,
asan, and asan+dpp. As can be seen from the figure, the cu-
mulative workload run-time for the default ASan is almost
2x (1.9x to be exact) with respect to the baseline. The run-
time is reduced to only ∼ 1.2x when we incorporate DPP in
ASan, which reduces the run-time overhead by around 70%
compared to the default ASan.

Figure 4: Impact of DPP on reducing the workload run-time
overhead of the SPEC CPU2017 benchmark suite.

Performance improvement of real-world applications.
Additionally, we measured DPP’s performance improvement
in five real-world applications including a browser, one
browser library, and one lightweight benchmark: nginx, httpd,
lighttpd, postgres, midori, gtk library, and nbench. The mi-
dori browser uses the gtk library for creating graphical user
interfaces. We compared the throughput and run-time of the
asan and asan+dpp versions of each application, as well as
the CPU Index for nbench, using benchmark workloads gen-
erated by wrk [35] for the web servers and sysbench [49] for
postgres. We used the Lite Brite 13 benchmark for the browser
and libgtk’s own benchmark for the gtk library. We chose the
Midori browser as our focus for evaluation due to the fast and

13https://testdrive-archive.azurewebsites.net/Performance/LiteBrite/

straightforward compilation process of DPP-enabled ASan.
Incorporating DPP-enabled ASan compilation is exception-
ally slow for standard commercial browsers like Chromium
and Firefox, primarily due to their large size and high com-
plexity, which pose challenges for the points-to analysis. De-
veloping a feasible points-to analysis (e.g., utilizing the latest
type-based analysis [41]) and an optimized DPP framework
for such large projects remains an important future work.

Pe
rc

en
ta

ge
 (%

)

0

25

50

75

100

nginx httpd lighttpd postgres nbench midori libgtk

Improvement over Asan

Figure 5: DPP’s performance improvement over asan for real-
world applications.

Figure 5 shows the percentage of performance improve-
ment of the applications, benchmark, and library over the
ASan. We found that DPP-enabled ASan improves the per-
formance by 28% on average in this experiment compared
to the ASan. Besides, we observe DPP-enabled ASan incurs
∼19% less overhead than the default ASan (∼44%) for the
web servers, database, and nbench. With respect to ASan, this
overhead reduction is ∼43% by the DPP-enabled ASan.

The overhead reduction in this scenario (i.e., with the real-
world applications or libraries) is also slightly less than what
we observe in the SPEC CPU2017 benchmark suite, likely
because the type of these applications is different from the
CPU2017 benchmark. Besides the CPU-intensive tasks, these
applications also have network-intensive operations, whereas
most operations in the CPU2017 benchmark suite are CPU-
intensive. However, we also observe that only 3-4 CPUs out
of eight CPUs are saturated with 100% CPU utilization due to
mostly being network-intensive applications and limitations
of the benchmarking tools. Network latency is not also signifi-
cant due to the benchmark tools running for 60 seconds in the
same machine where the applications are running. This is a
limitation of our setup and the benchmarking tools. Nonethe-
less, this setup gives us a useful measurement to compare our
technique with the default ASan.

In addition, to understand how the individual rules impact
performance, we measure the throughput of nginx by apply-
ing a single rule at a time. Figure 6 shows the throughput
ratio of different rules after normalizing a throughput with the
lowest one. According to the result, the ratios are very similar
(and within 1.0∼1.1). The reason is that the numbers of prior-
itized data objects in various rules are close to each other and
are very few compared to the total number of data objects in
nginx. However, due to the difference in the number of priori-
tized data objects in different rules, we still can observe some
differences (though not significant) in the throughput ratios
across the rules. We show this impact of individual rules in

detail using the SPEC CPU2017 benchmark in Figure 9 in
Appendix A.4. It is important to mention that multiple rules
enable us the opportunity to identify top-ranked data objects.

Th
ro

ug
hp

ut
 ra

tio

0.99

1.018

1.045

1.073

1.1

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7

Figure 6: Impact of individual rules on performance of nginx.

Impact of various analysis approaches on DPP. To under-
stand how the choice of the various points-to analyses im-
pacts our approach, we prioritize vulnerable data objects from
Linux Flaw Project using three points-to-analysis choices:
Andersen, Steensgaard, and Flow Sensitive. We compare the
accuracy and time for each choice. Table 6 in Appendix A.4
shows the result. Steensgaard is the fastest of the three be-
cause it requires less than 47% time than Andersen. However,
DPP with Steensgaard fails to prioritize the most vulnerable
objects (misses seven out of ten vulnerable objects). That
means, Steensgaard increases false negatives due to imprecise
points-to-analysis. Flow Sensitive, on the other hand, is the
slowest as it requires 78% more time than Andersen but man-
ages to prioritize all cases in programs (except where it did
not fail due to memory issues marked by a dash in Table 6 in
Appendix A.4). Andersen seems a balanced option between
the two options. It is neither the fastest nor the most accurate,
but it is reasonable for a reliable points-to analysis. Note that
we use Andersen’s points-to analysis in our previous results.
Cost of data flow analysis and rules. We provide the costs
incurred by three key parts of DPP: (i) the pointer and data
flow analysis (i.e., SVF), (ii) taint analysis, and (iii) individual
rules. For an average-sized program (∼60kloc) in our eval-
uation (e.g., proftpd), SVF takes ∼23 seconds whereas our
analysis (taint and individual rules) takes ∼72 seconds. How-
ever, this cost also depends on how many pointers are in a
program. For example, SVF and the rest analysis take around
2 and 4 seconds, respectively, to complete for a reasonably
large program (httpd, ∼260kloc). We provide the detailed
results in Table 7 in Appendix A.4.
Summary of Key Takeaways
1 More than 95% of data objects in a real-world program do
not need protection. DPP identifies potentially sensitive data
objects by identifying and prioritizing top 3–4% data objects
from real-world applications.
2 Common and widely applicable rules are simple, but pow-
erful for coverage. We extracted the common and widely
applicable rules from existing exploits. These rules identify
all the vulnerable objects from the Linux Flaw Project or
Juliet Test Suite with zero knowledge about the data objects
from the datasets.

3 DPP is tunable in the security, usability, and performance
dimensions. DPP enables the trade-offs between accuracy
and performance. We can make DPP tunable in the security
(false negative), usability (false positive), and performance
dimensions. DPP achieves ∼1.6x performance improvement
compared to the default ASan. We can also tune the perfor-
mance based on the level of security needed.

6 Discussion

Our DPP is a generic framework intended for any data-
oriented defense mechanisms. Our specific prototype builds
on ASan but does not have to. We chose ASan over the other
live defenses due to its compatibility and stability, and be-
cause it gives us a good estimation of the efficacy of our
prioritization. However, despite its benefits, DPP still faces
an average overhead of around 20% (when overhead from
SPEC CPU2017 benchmark and real-world applications are
considered), while protecting 100% of the prioritized data
objects. This level of overhead may not be practical for de-
ploying DPP as a live defense. Nevertheless, DPP does offer
the flexibility to selectively protect data objects from the pri-
oritized list. In fact, as demonstrated in Table 4, the minimum
number of data objects requiring protection can be as low
as 3-4% of the total data objects. This newfound capability
presents an opportunity to significantly reduce DPP’s over-
head to a practical range when performance and security do
not compete with each other.

Our approach differs from Clang Static Analyzer 14 , which
focuses on detecting bugs, while we prioritize instrumentation
for input-dependent and potentially flawed code. Therefore,
DPP complements static analyzers, and using both tools can
reduce code errors and prioritize runtime instrumentation. Our
approach also offers flexibility in balancing performance and
security by adjusting the number of protected data objects.

The efficacy of a rule depends on its ability to detect a wide
variety of attacks. To achieve the coverage and generalization
of rules, we extract the rules by breaking down exploits and
identifying key exploit strategies such as manipulation of con-
ditions and loops through data pointers, utilizing the position
of a data pointer (e.g., adjacent to a data buffer), utilizing vul-
nerable library functions, finding unbounded allocations and
so on. Exploits may use a strategy or a combination of strate-
gies from our identified strategies to construct their attacks.
Our identified strategies are our best effort rules that tend to
work well, as we experimentally confirmed in our evaluation
(Section 5). However, new rules may be added to our rule set
in the future to cover additional classes of attacks.

We evaluated DPP’s security guarantees using empirical
evidence instead of theoretical guarantees commonly found
in system security literature. We tested DPP using programs
containing eight types of memory issues and found that our

14https://clang.llvm.org/docs/ClangStaticAnalyzer.html

https://clang.llvm.org/docs/ClangStaticAnalyzer.html

rules detected all these errors in the Linux Flaw Project and
Juliet Test Suite datasets (Tables 2 and 3), despite having no
prior knowledge of these datasets.

Our prioritization approach has some limitations. For ex-
ample, our approach may generate false positives in some
conditions. An input-dependent object might be assumed cor-
rect due to the existence of bounds checks, however because
the bounds check is itself not validated for correctness this
might lead to a false positive. Such incomplete or wrong
bound-conditions are a common source of many real-world
vulnerabilities (e.g., CVE-2006-5815 and CVE-2021-23017).
More extensive analysis, for instance, utilizing symbolic exe-
cution [37] could be employed to address this and, in general,
improve accuracy of analysis.

Currently, our rules do not capture the complete end-to-end
logic for temporal vulnerabilities like use-after-free, double-
free, and invalid-free. This is due to the complexity involved,
which requires logging and analyzing the temporal usage
of pointers, making our rules more complex. However, our
rules still prioritize and protect objects or pointers vulnerable
to temporal vulnerabilities through ASan or other methods,
as long as they match the rules. Nevertheless, our approach
may miss sensitive objects if we overlook sensitive variables
(apart from pointers) followed by a buffer and if the list of
vulnerable library functions is incomplete. Researching the
identification of simple and sensitive primitive data variables
would be valuable, and a broader benchmark is needed to fully
assess the effectiveness of our rules. Additionally, integrating
DPP’s outcomes into live defense, such as ARM PA, can be
achieved by selectively enabling PA instructions for DPP-
related pointers through LLVM transformation and backend
passes. Yet, further work is necessary to address integration
challenges and evaluate the approach’s robustness.

7 Additional Related Work

Researchers have designed techniques to protect sensitive
data. Palit et al. designed a compiler-level defense that pro-
tects critical data [49, 50]. However, they manually annotate
the sensitive data. Similarly, FlowStitch [30] performed the
automation of data-oriented attacks using predefined critical
data. Our work automates the identification and prioritization
of sensitive data. A few best-effort and semi-automated tech-
niques [36, 43] also determined the critical data. For example,
Jia et al. [36] determined the decision-making data by record-
ing the execution of two traces with normal execution and
violated execution, and observing the data that get modified
and change executions. Access-driven trace data [43] are also
useful to determine and understand the critical data and their
structures. However, these solutions have limited scalability
due to the need for huge and relevant execution and access
traces. On the other hand, Pathfinder [54] can automatically
navigate to sensitive data from a leaked data pointer. However,
it does not indicate how to determine or label sensitive data.

Researchers also proposed metrics to identify and prioritize
significant software weaknesses [25].

Object- and pointer-based countermeasures have be-
come popular. Object-based protection mechanisms such as
ASan [59] and HWASan [28] protect objects by storing meta-
data in a shadow memory area and marking red-zones with
blocks of poisoned memory between adjacent objects. An ac-
cess to these red-zones indicates an overflow and terminates
the programs at runtime. PointGuard [15] and ARM PA [52]
can protect the integrity of pointers. To improve security and
performance of ARM PA, researchers have also proposed
the secured [40] and efficient [34] use of PA. PARTS [40]
used a type-based modifier to prevent pointer reuse attacks.
PACTight [34] selectively protects pointers that are reachable
from code pointers. Data space randomization or diversifi-
cation [4, 7, 53] is another defense direction for protecting
sensitive data. For example, CoDaRR [53] could be an alter-
native and orthogonal approach to DPP.

8 Conclusion

In this paper, we proposed an automatic prioritization frame-
work for identifying and protecting sensitive memory-resident
data objects to prevent data-oriented attacks. The overall re-
sults suggest that the simple rule-based heuristics are effec-
tive. Our exploit and vulnerability-driven rule-based heuristics
give the flexibility to add new rules when necessary. Our ex-
perimental evaluations using the Linux Flaw Project [19],
Juliet Test Suite [5, 47], and real-world programs showed the
successful identification of vulnerable data objects. DPP im-
proves performance by ∼1.6x and reduces run-time overhead
by 70% compared to ASan. We presented that not all data
objects in an application require protection and we can prior-
itize them. This proposed prioritization scheme is new and
makes our approach different from the conventional protec-
tion paradigm.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
support and valuable feedback for this work. This work has
been supported by the Office of Naval Research under Grant
N00014-22-1-2057, Virginia Commonwealth Cyber Initiative
(CCI), the Natural Sciences and Engineering Research Coun-
cil of Canada (RGPIN-2020-04744), and Intel Labs via the
Private-AI consortium.

References

[1] Salman Ahmed, Ya Xiao, Kevin Z Snow, Gang Tan,
Fabian Monrose, and Danfeng Yao. Methodologies
for quantifying (re-) randomization security and timing
under jit-rop. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security,
pages 1803–1820, 2020.

[2] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[3] Arati Baliga, Pandurang Kamat, and Liviu Iftode. Lurk-
ing in the shadows: Identifying systemic threats to ker-
nel data. In 2007 IEEE Symposium on Security and
Privacy (SP’07), pages 246–251. IEEE, 2007.

[4] Sandeep Bhatkar and R. Sekar. Data space random-
ization. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 1–22. Springer, 2008.

[5] Paul E. Black. A software assurance reference dataset:
Thousands of programs with known bugs. Journal of
Research of the National Institute of Standards and Tech-
nology, 123:123005, April 2018.

[6] The Heartbleed Bug. http://heartbleed.com. Ac-
cessed June 01, 2023.

[7] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-
Phillipe Martin, and Miguel Castro. Data randomiza-
tion. Technical report, TR-2008-120, Microsoft Re-
search, 2008.

[8] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-Flow Bend-
ing: On the Effectiveness of Control-Flow Integrity. In
USENIX Security Symposium, pages 161–176, 2015.

[9] Miguel Castro, Manuel Costa, and Tim Harris. Securing
software by enforcing data-flow integrity. In Proceed-
ings of the 7th symposium on Operating systems design
and implementation, pages 147–160, 2006.

[10] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar,
and Ravishankar K Iyer. Non-Control-Data Attacks
Are Realistic Threats. In USENIX Security Symposium,
volume 5, 2005.

[11] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas
Nyman, Haipeng Cai, Trent Jaeger, N Asokan, and Dan-
feng Yao. Exploitation techniques for data-oriented
attacks with existing and potential defense approaches.
ACM Transactions on Privacy and Security (TOPS),
24(4):1–36, 2021.

[12] Long Cheng, Hans Liljestrand, Md Salman Ahmed,
Thomas Nyman, Trent Jaeger, N Asokan, and Dan-
feng Daphne Yao. Exploitation techniques and defenses
for data-oriented attacks. In 2019 IEEE Secure Devel-
opment, SecDev 2019, pages 114–128, 2019.

[13] Long Cheng, Ke Tian, and Danfeng Yao. Orpheus: En-
forcing cyber-physical execution semantics to defend
against data-oriented attacks. In Proceedings of the
33rd Annual Computer Security Applications Confer-
ence, pages 315–326, 2017.

[14] Crispin Cowan, Steve Beattie, John Johansen, and Perry
Wagle. PointGuardTM: Protecting Pointers From Buffer
Overflow Vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium, volume 12,
pages 91–104, 2003.

[15] Stanley Crispin Cowan, Seth Richard Arnold,
Steven Michael Beattie, and Perry Michael Wagle.
Pointguard: method and system for protecting programs
against pointer corruption attacks, July 6 2010. US
Patent 7,752,459.

[16] Daniel Moghimi. Subverting without EIP. https://mo
ghimi.org/blog/subverting-without-eip.html,
2014. Accessed January 06, 2021.

[17] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. PT-Rand: Practical Mitigation of
Data-only Attacks against Page Tables. In NDSS, 2017.

[18] Joe Devietti, Colin Blundell, Milo MK Martin, and Steve
Zdancewic. Hardbound: architectural support for spatial
safety of the C programming language. ACM SIGOPS
Operating Systems Review, 42(2):103–114, 2008.

[19] Dongliang Mu. Linux Flaw Project. https://github
.com/mudongliang/LinuxFlaw. Accessed June 01,
2023.

[20] Gregory J Duck and Roland HC Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, pages 132–142, 2016.

[21] Gregory J Duck, Roland HC Yap, and Lorenzo Caval-
laro. Stack bounds protection with low fat pointers. In
NDSS, 2017.

[22] Thomas F. Dullien. Weird machines, exploitability, and
provable unexploitability. IEEE Transactions on Emerg-
ing Topics in Computing, 2018.

[23] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziiba-
yar Otgonbaatar, Tiffany Tang, Howard Shrobe, Ste-
lios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. Missing the point (er): On the effectiveness
of code pointer integrity. In 2015 IEEE Symposium on
Security and Privacy, pages 781–796. IEEE, 2015.

[24] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long
Lu. PTAuth: Temporal memory safety via robust points-
to authentication. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1037–1054, 2021.

http://heartbleed.com
https://moghimi.org/blog/subverting-without-eip.html
https://moghimi.org/blog/subverting-without-eip.html
https://github.com/mudongliang/LinuxFlaw
https://github.com/mudongliang/LinuxFlaw

[25] Carlos Cardoso Galhardo, Peter Mell, Irena Bojanova,
and Assane Gueye. Measurements of the most signifi-
cant software security weaknesses. In Annual Computer
Security Applications Conference, pages 154–164, 2020.

[26] Masoud Ghaffarinia and Kevin W. Hamlen. Binary
control-flow trimming. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1009–1022, 2019.

[27] Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Enhanced operating system security
through efficient and fine-grained address space ran-
domization. In USENIX Security Symposium, pages
475–490, 2012.

[28] Hardware-assisted AddressSanitizer. https://clang.
llvm.org/docs/HardwareAssistedAddressSanit
izerDesign.html. Accessed June 01, 2023.

[29] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew
Hall, and Jack W. Davidson. ILR: Where’d my gadgets
go? In 2012 IEEE Symposium on Security and Privacy,
pages 571–585. IEEE, 2012.

[30] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek
Saxena, and Zhenkai Liang. Automatic generation of
data-oriented exploits. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 177–192, 2015.

[31] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 969–986. IEEE, 2016.

[32] Intel. Control-flow enforcement technology preview.
https://www.intel.com/content/www/us/en/de
veloper/articles/technical/technical-look-
control-flow-enforcement-technology.html.
Accessed June 01, 2023.

[33] Introduction to Intel R©Memory Protection Extensions.
https://software.intel.com/content/www/us/
en/develop/articles/introduction-to-inte
l-memory-protection-extensions.html, 2013.
Accessed March 24, 2020.

[34] Mohannad Ismail, Andrew Quach, Christopher Jelesni-
anski, Yeongjin Jang, and Changwoo Min. Tightly seal
your sensitive pointers with pactight. arXiv preprint
arXiv:2203.15121, 2022.

[35] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block Oriented Programming: Au-
tomating Data-Only Attacks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1868–1882, 2018.

[36] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen,
Prateek Saxena, and Zhenkai Liang. "the web/local"
boundary is fuzzy: A security study of chrome’s process-
based sandboxing. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pages 791–804, 2016.

[37] James C King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[38] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Ke-
merlis, and Michalis Polychronakis. Compiler-assisted
code randomization. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 461–477. IEEE, 2018.

[39] Volodymyr Kuznetsov, László Szekeres, and Mathias
Payer. Code-pointer integrity. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, pages 147–163, Broomfield,
CO, USA, 2014.

[40] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N Asokan. Pac it
up: Towards pointer integrity using arm pointer authen-
tication. In 28th USENIX Security Symposium (USENIX
Security 19), pages 177–194, 2019.

[41] Kangjie Lu. Practical program modularization with type-
based dependence analysis. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 1610–1624. IEEE
Computer Society, 2022.

[42] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1867–
1881, 2019.

[43] Micah Morton, Jan Werner, Panagiotis Kintis, Kevin
Snow, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. Security risks in asynchronous web
servers: When performance optimizations amplify the
impact of data-oriented attacks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
167–182. IEEE, 2018.

[44] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. SoftBound: Highly compatible
and complete spatial memory safety for C. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
245–258, 2009.

[45] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Mar-
tin, and Steve Zdancewic. CETS: compiler enforced
temporal safety for C. In Proceedings of the 2010 in-
ternational symposium on Memory management, pages
31–40, 2010.

https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html

[46] George C Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. CCured: Type-
safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems (TOPLAS),
27(3):477–526, 2005.

[47] NIST. Software Assurance Reference Dataset. http
s://samate.nist.gov/SARD/test-suites/112.
Accessed June 01, 2023.

[48] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel MPX Explained:
A Cross-Layer Analysis of the Intel MPX System Stack.
SIGMETRICS Perform. Eval. Rev., 46(1):111–112, June
2018.

[49] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and
Michalis Polychronakis. DynPTA: Combining static and
dynamic analysis for practical selective data protection.
In 2021 IEEE Symposium on Security and Privacy (SP),
pages 1919–1937, May 2021.

[50] Tapti Palit, Fabian Monrose, and Michalis Polychron-
akis. Mitigating data leakage by protecting memory-
resident sensitive data. In Proceedings of the 35th An-
nual Computer Security Applications Conference, pages
598–611, 2019.

[51] J. Pewny, P. Koppe, and T. Holz. STEROIDS for DOPed
Applications: A Compiler for Automated Data-Oriented
Programming. In IEEE European Symposium on Secu-
rity and Privacy (Euro S&P), pages 111–126, 2019.

[52] Qualcomm Technologies Inc. Pointer Authentication on
ARMv8.3. https://www.qualcomm.com/media/doc
uments/files/whitepaper-pointer-authentica
tion-on-armv8-3.pdf. Accessed June 01, 2023.

[53] Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul
Na, Stijn Volckaert, and Michael Franz. CoDaRR: Con-
tinuous data space randomization against data-only at-
tacks. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, pages 494–
505, 2020.

[54] Roman Rogowski, Micah Morton, Forrest Li, Fabian
Monrose, Kevin Z. Snow, and Michalis Polychronakis.
Revisiting browser security in the modern era: New
data-only attacks and defenses. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
366–381. IEEE, 2017.

[55] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy,
David Walker, and Benjamin Zorn. Modular protections
against non-control data attacks. Journal of Computer
Security, 22(5):699–742, 2014.

[56] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit object-oriented programming: On the dif-
ficulty of preventing code reuse attacks in C++ appli-
cations. In 2015 IEEE Symposium on Security and
Privacy, pages 745–762. IEEE, 2015.

[57] Edward J Schwartz, Cory F Cohen, Jeffrey S Gennari,
and Stephanie M Schwartz. A Generic Technique for
Automatically Finding Defense-Aware Code Reuse At-
tacks. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1789–1801, 2020.

[58] Jeff Seibert, Hamed Okhravi, and Eric Söderström. In-
formation leaks without memory disclosures: Remote
side channel attacks on diversified code. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 54–65, 2014.

[59] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pages 309–
318, 2012.

[60] Shellphish. Educational Heap Exploitation: how2heap.
https://github.com/shellphish/how2heap. Ac-
cessed June 01, 2023.

[61] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In
2013 IEEE Symposium on Security and Privacy, pages
574–588. IEEE, 2013.

[62] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William
Harris, Taesoo Kim, and Wenke Lee. Enforcing kernel
security invariants with data flow integrity. In NDSS,
2016.

[63] Chengyu Song, Hyungon Moon, Monjur Alam, Insu
Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and
Yunheung Paek. HDFI: Hardware-assisted data-flow
isolation. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 1–17. IEEE, 2016.

[64] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In Proceedings of the
25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[65] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62. IEEE,
2013.

https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://github.com/shellphish/how2heap

[66] PaX Team. PaX address space layout randomization
(ASLR). 2003.

[67] Jidong Xiao, Hai Huang, and Haining Wang. Kernel
data attack is a realistic security threat. In International
Conference on Security and Privacy in Communication
Systems, pages 135–154. Springer, 2015.

[68] Mingwei Zhang and R. Sekar. Control Flow Integrity
for COTS Binaries. In USENIX Security Symposium,
pages 337–352, 2013.

A Appendix

A.1 Algorithm

Algorithm 1 performs the tainting process in SVFG, involving
taint source identification and propagation initiation (lines 3–
8), tainted data propagation (lines 9–12), data tainting via
index variables or pointers (lines 13–17), propagation from
second to the first argument (lines 18–24), and SVFG traversal
using UpdateTaintList function (lines 25–32).

A.2 Common Ancestor Solution

To find the common ancestor, we obtain all the SVF nodes that
are backwardly reachable from an allocation’s argument node.
Figure 7 shows a partial SVFG of the example program in
Figure 1. Node 4 in Figure 7 is the argument of the memory
allocation SVF node (i.e., Node 5) in Figure 2. The reach-

Figure 7: Partial SVFG. Common ancestor of node 4 and
node 15 is node 3.

able nodes from the allocation’s argument node (i.e., node 4
in Figure 7) are nodes 2 , 3 , 4’ , and 4 . We then take each
cmp node from the search paths that we have already obtained
from the ICFG (e.g., 11) 10) 7) 6) 5) 4) 3) 2) 1 from
Figure 8), obtain its corresponding node(s) from the SVFG,
and traverse backwardly from the corresponding node(s). If
the backward traversal encounters any node from the reach-
able nodes, that means the cmp node has a common ancestor
with the argument node of an allocation function, hence this
cmp node is related to the argument of the allocation function.
In Figure 7, the common ancestor of node 4 and node 15 is
node 3 .

Algorithm 1: Identifying taint sources starting from
all call sites and propagating taints through the SVFG

Function PerformTaintAnalysis(SV FG):
1 InputFuncs← a set of all input reading functions
2 TaintedNodes← {}

/* tainting arguments of input reading functions */
3 foreach Callee callee : getCallSites() do
4 if InputFuncs.contain(callee) then
5 foreach Argument arg : callee.getArguments() do
6 UpdateTaintList(arg, TaintedNodes)

/* taints points-to set if arg is a pointer
*/

7 foreach Ob ject target : points-to-set(arg) do
8 UpdateTaintList(target, TaintedNodes)

/* propagating the taints starting from a memory object
node to all reachable nodes in a SVFG */

9 foreach AddressTakenNode node : SVFG.nodes() do
10 hasTaintedArg = node.hasAnyTaintedArg()
11 if hasTaintedArg is true then
12 UpdateTaintList(node, TaintedNodes)

/* tainting an object when the object is accessed with a
tainted pointer or index */

13 foreach GEP node : SVFG.nodes() do
14 isTainted = node.checkForTaintedArg(startIndex=1)
15 if isTainted is true then
16 foreach Object target : points-to-set(node.getOperand(0))

do
17 UpdateTaintList(target, TaintedNodes)

/* tainting first arg when a tainted value is copied
from the second param */

18 foreach CallInst node : SVFG.nodes() do
19 isCopyFunc = is2ndArgCopiedTo1stArg(node)
20 if isCopyFunc is true then
21 operand2 = node.getOperand(1)
22 UpdateTaintList(operand2, TaintedNodes)
23 foreach Object target : points-to-set(node.getOperand(0))

do
24 UpdateTaintList(target, TaintedNodes)

/* propagating taints to all successor nodes from a node */
Function UpdateTaintList(arg, TaintedNodes):

25 worklist← {}
26 worklist.insert(arg)

27 while worklist not empty() do
28 node = worklist.pop()
29 TaintedNodes.insert(node)

30 foreach Successor successor: node.successors() do
31 if successor not visited then
32 worklist.insert(successor)

A.3 Locations of Vulnerable Data Objects
Table 8 shows the locations of vulnerable data objects or their
pointers in various programs including the line numbers.

A.4 Additional Results
This section provides additional results regarding impact of
individual rules on performance of the SPEC CPU2017 bench-
mark (Figure 9), impact of different choices of points-to analy-
ses on DPP (Table 6), and cost of different analyses (Table 7).

Table 6: Different choices of points-to analyses impacting DPP.

CVE Andersen Steensgaard Flow Sensitive
SVF

(seconds) Detection SVF
(seconds) Detection Run-time reduction

w.r.t. Andersen
SVF

(seconds) Detection Run-time increased
w.r.t. Andersen

CVE-2006-0539 0.05 X 0.04 X 20% 0.06 X 20%
CVE-2006-2362 66.19 X 6.49 X 90% – – –
CVE-2009-1759 2.42 X 1.87 X 23% 8.14 X 236%
CVE-2009-2285 3.02 X 1.59 X 47% 4.40 X 46%
CVE-2010-2482 3.25 X 1.33 X 59% 4.64 X 43%
CVE-2013-4243 4.08 X 2.30 X 44% 6.43 X 58%
CVE-2013-4473 402.94 X 191.52 X 52% – – –
CVE-2013-4474 402.94 X 191.52 X 52% – – –
CVE-2015-8668 4.08 X 2.30 X 44% 6.43 X 58%
CVE-2017-12858 0.88 X 0.50 X 43% 1.64 X 86%

47.4% 78%

Table 7: Cost of data flow, taint and rule analyses in seconds.

Program Size (kloc) SVF Taint Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7
fcron-3.0.0 7.9 0.05 0 0 0 0 0 0 0.01 0
ctorrent-dnh3.3.2 11.1 2.42 0.22 0.26 1.64 0 0.36 0.12 13.63 0
tiff-4.0.1 64.3 4.08 0.5 0.35 2.7 0.01 0.12 0.08 19.98 0
poppler-0.24.2 170.2 402.94 41.5 34.64 865.15 0.08 56.98 30.02 9334.37 10214.56
libzip-1.2.0 18.6 0.88 0.05 0.06 0.29 0 0.04 0.03 1.77 0.1
ghttpd-1.4 0.6 0.04 0 0 0 0 0 0 0 0
wu-ftpd-2.6.0 19.4 0.98 0.07 0.11 0.51 0 0.16 0.03 0.37 4.16
proftpd-1.3.0 59.6 23.27 4.1 1.04 8.65 0.01 2.76 0.86 32.8 21.34
httpd-2.4.7 251 2.26 0.32 0.16 1.01 0.04 0.06 0.01 2.49 0.02
nullhttpd-0.5.0 1.8 0.07 0 0 0 0 0 0 0 0
midori (browser) 89.3 1.72 0.03 0 0.01 0.01 0 0 0.07 0.01
libgtk (browser library) 443.8 88.49 0.76 0 0.15 7.26 0.07 0 1.28 0.11

Figure 8: ICFG for testcase function in Figure 1.

Figure 9: Impact of individual rules on performance of the
SPEC CPU2017 benchmark.

Table 8: Vulnerable data objects and their pointers in various
programs. The * in some source file names and function
names indicate that parts of the file name or function name
have been truncated for space.

Vuln. data object Application Source Line #
char *argv[] fcron-3.0.0 convert-fcrontab.c 152
char sym[17] binutils-2.15 bfd/tekhex.c 394
char path[MAXPATHLEN] ctorrent-dnh3.3.2 btfiles.cpp 454
TIFF* tif tiff-3.8.2 tif_read.c 245
TIFF* tif tiff-3.9.2 libtiff/tif_open.c 154
TIFF *tif tiff-4.0.1 libtiff/tif_open.c 86
char pathName[4096] poppler-0.24.2 utils/pdfseparate.cc 48
char *destFileName poppler-0.24.2 utils/pdfseparate.cc 47
TIFF *tif tiff-4.0.1 libtiff/tif_open.c 86
zip_buffer_t *buffer libzip-1.2.0 lib/zip_buffer.c 168

char *ptr ghttpd-1.4 protocol.c 62
struct passwd *pw wu-ftpd-2.6.0 ftpd.c 264
char *src proftpd-1.3.0 src/support.c 631
char *cp proftpd-1.3.0 src/support.c 631

apr_array_header_t *log_format httpd-2.4.7 server/log.c 1209

char *pPostData; nullhttpd-0.5.0 src/http.c 92

int buffer[10] CWE121*/s01 *_fgets_01.c 44
int * buffer CWE122*/s01 *_fscanf_01.cpp 34
int buffer[10] CWE126*/s01 *_fgets_01.c 43
int buffer[10] CWE124*/s01 *_listen_socket_01.c 120
int buffer[10] CWE127*/s01 *_fscanf_01.c 30

	Introduction
	Background & Threat Model
	DOA
	Defenses against Data-Oriented Attacks
	Threat Model

	Data and Pointer Prioritization
	Rule-based Prioritization
	Data Flow Tracking
	Taint Analysis

	Implementation
	Rule Implementation

	Evaluation
	Security Evaluation
	Prioritization Efficacy
	Sensitiveness of Leftover Data Objects
	Performance Evaluation

	Discussion
	Additional Related Work
	Conclusion
	Appendix
	Algorithm
	Common Ancestor Solution
	Locations of Vulnerable Data Objects
	Additional Results

