
Causality reasoning about network events for
detecting stealthy malware activities 1

Hao Zhang a, Danfeng (Daphne) Yao a,*, Naren Ramakrishnan a, Zhibin Zhang b

a Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
b Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

A R T I C L E I N F O

Article history:

Received 31 July 2015

Received in revised form 20

December 2015

Accepted 11 January 2016

Available online 21 January 2016

A B S T R A C T

Malicious software activities have become more and more clandestine, making them chal-

lenging to detect. Existing security solutions rely heavily on the recognition of known code or

behavior signatures, which are incapable of detecting new malware patterns. We propose to

discover the triggering relations on network requests and leverage the structural information

to identify stealthy malware activities that cannot be attributed to a legitimate cause. The

triggering relation is defined as the temporal and causal relationship between two events.We

design and compare rule- and learning-based methods to infer the triggering relations on

network data.We further introduce a user-intention based security policy for pinpointing stealthy

malware activities based on a triggering relation graph. We extensively evaluate our solution

on a DARPA dataset and 7 GB real-world network traffic. Results indicate that our depen-

dence analysis successfully detects various malware activities including spyware,data exfiltrating

malware, and DNS bots on hosts. With good scalability for large datasets, the learning-based

method achieves better classification accuracy than the rule-based one. The significance of

our traffic reasoning approach is its ability to detect new and stealthy malware activities.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Network security

Anomaly detection

Stealthy malware

Traffic analysis

Dependence analysis

Machine learning classification

1. Introduction

Recent advancements in information technology have raised
concerns on the security risks posed by the prevalence of ma-
licious software. A study showed that a significant portion of
computers worldwide is infected with malware conducting clan-
destine activities (Panda Security Report). Malware may spy on
the victim user, cause data exfiltration, and abuse the com-
puter for conducting bot activities (e.g., command-and-
control). The initial infection vector of most malware is usually
through exploiting vulnerabilities of common networked soft-

ware, e.g., heap overflow vulnerability in a web browser or its
plug-ins (Cova et al., 2010). Once the infection is successful (e.g.,
zero-day exploits), network requests from advanced malware
may not exhibit distinct communication patterns. Because of
this lack of signatures, pattern-based scanning is ineffective.

Compared to inspecting individual network requests, a more
effective network security approach is to discover character-
istic behavioral patterns in network event attributes. For
example, BINDER (Cui et al., 2005) detects anomalous network
activities on personal computers through analyzing the cor-
relation in network events by the temporal and process
information. BotMiner (Gu et al., 2008) performs a correlation

1 The preliminary version of this work appeared in the Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), Kyoto, Japan, June 2014 (Zhang et al., 2012) and in the Proceedings of 33th IEEE Symposium on Security
and Privacy Workshops (SPW), San Francisco, CA, May 2012 (Zhang et al., 2014). This work was supported in part by an NSF grant CAREER
CNS-0953638, ARO YIP W911NF-14-1-0535, and L-3 communications.

* Corresponding author. Tel.: +1 540 231 7787.
E-mail address: danfeng@vt.edu (D.(D.) Yao).

http://dx.doi.org/10.1016/j.cose.2016.01.002
0167-4048/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:danfeng@vt.edu
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2016.01.002&domain=pdf

analysis across multiple hosts of a network for detecting simi-
larly infected bots. King et al. (2005) constructed directed graphs
from logs to show network connections for dissecting attack
sequences. However, none of these above solutions is
designed for detecting general stealthy malware activities.Thus,
they cannot be directly applied to our problem.

In this work, we describe a new triggering relation discovery
problem to construct the request-level causality structure in
network traffic. There have not been systematic studies on
network-request-level causal analysis for malware detection.
Existing dependence analysis work (e.g. Natarajan et al., 2012;
Zand et al.) focuses on the network services and is not de-
signed for malware detection. For example, NSDMiner
(Natarajan et al., 2012) addressed the problem of network service
dependency for automatic manageability and network stabil-
ity. Rippler (Zand et al.) is proposed to actively perturb or delay
traffic to understand the dependencies between service and
devices. In comparison, we aim at achieving the request-level
causality structure in network traffic. This finer granularity
(request vs. flow) requires different relation semantics and more
scalable analysis methods.

We introduce the problem of triggering relation discovery in
network traffic and describe its application in solving chal-
lenging network security problems, such as stealthy malware
detection. Triggering relations of events provide contextual in-
terpretations for the behaviors of systems and networks,
illustrating why sequences of events occur and how they relate
to each other. We develop rule- and learning-based methods
that detect network activities of stealthy malware activities
through reasoning their causal relationship. We design a new
method pairing that produces special pairwise features in the
learning-based approach, so that the discovery problem can
be efficiently solved with existing binary classification methods
(e.g., SVM). By enforcing a root-trigger policy, we can identify
the suspicious events that lack of valid triggers, and thus ensure
an application’s correct responses to user activities.

The higher-level information such as the underlying rela-
tions or semantics of events is useful for human experts’
cognition,reasoning,and decision-making in cyber security (Green
et al., 2008; Zhang et al., 2015).Thus, analyzing relations among
network events provides important insights for identifying general
stealthy malicious activities.The causality offers the logical in-
terpretation to the vast amount of otherwise structureless and
contextless network events. Our work demonstrates that trig-
gering relations among cyberspace events enables the network
assurance with structural evidence of the hosts.

Our contributions are summarized as follows.

1. We formalize the problem of triggering relation discovery
in network requests, the data structure of triggering rela-
tion graph, and their applications for detecting stealthy
malware activities.

2. We present two approaches for discovering the triggering
relations among network events. First, we design a discov-
ery algorithm based on empirically derived rules. In the rule-
based approach, we inspect the temporal, semantic, and
process-related attributes to reveal the causal relations
among network requests. Then, we propose an advanced
learning-based approach. A new feature extraction method
is introduced as the pairing operation. It performs pairwise

attribute comparisons, enabling the use of binary classifi-
ers for our triggering relation discovery.

3. We adopt a new root-trigger security policy on discovered trig-
gering relations for malware detection. This policy allows
one to identify vagabond events, i.e., network events that do
not have proper causes to justify their occurrences.

4. We extensively evaluate the classification and detection ac-
curacy rates of our solution with DARPA dataset and real-
world network traffic, including HTTP, DNS, and TCP traffic.
Both rule- and learning-based methods are compared in iden-
tifying the dependencies and the learning-based one yields
better prediction accuracy rates than rule-based one.We show
that our dependence analysis is effective in detecting stealthy
malware activities (e.g., HTTP-based malware and DNS bots).

Triggering relation discovery provides a new perspective for
analyzing network traffic. It allows one to reason about the oc-
currences of network events, to detect unexplained network
activities that are due to stealthy malware. The significance of
our traffic reasoning approach is its ability to detect new and
stealthy malware activities.

Major new results reported in this journal publication com-
pared with previous conference papers (Zhang et al., 2012, 2014)
are summarized as follows. We report the side-by-side com-
parisons of the rule-based and learning-based dependency
analysis approaches. We perform new experiments evaluat-
ing the rule-based approach in discovering the triggering
relations on HTTP traffic and in detecting HTTP-based malware
(e.g., stand-alone data exfiltrating malware). We conduct new
experiments on a DARPA dataset to evaluate our solution in
detecting the stealthy malicious activities (exploits due to vul-
nerable applications). Last but not least, this journal version
presents the rule-based and learning-based computation tech-
niques under a unified triggering relation discovery framework.
Such an abstraction can help motivate and inspire future re-
search on causality reasoning for security.

1.1. Organization

We introduce the triggering relation graph and its security ap-
plications in Section 2.Then we present the rule- and learning-
based methods in Sections 3 and 4, respectively. We illustrate
the root-trigger policy and its use in Section 5. We systemati-
cally evaluation our solution with real-world malware and
synthetic attacks in Section 6. Related work and conclusion are
presented in Sections 7 and 8.

2. Model and overview

In this section, we introduce the concept of triggering rela-
tionship, define the problem of triggering relation discovery, and
present the security applications.

2.1. TRG definitions and properties

Triggering relationship between event ei and event ej describes the
temporal relation and causal relation between them, specifi-
cally ei precedes ej and ei is the reason that directly causes ej to
occur. The specific semantics of triggering relation depend on
the type of events and environment. An event may be defined

181c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

at any relevant type or granularity, including user actions (e.g.,
keyboard stroke, mouse click), machine behaviors (e.g., network
request, function call, system call,file system access),and higher-
level operations and missions (e.g., database access, obtaining
Kerberos authorization, distributing video to select users).

Triggering relations of events may be represented in a directed
graph – referred to by us as triggering relation graph (TRG), where
each event is a node and a directed edge (ei → ej) from ei and to
ej represents the triggering relation. We also refer the trigger-
ing relation (ei → ej) as the parent–child relation, where ei is the
parent trigger or parent and ej is the child.ATRG provides a struc-
tural representation of triggering relations of observed events.

For specific types of network traffic, the TRG may manifest
unique topology and properties.We present one concrete example
to demonstrate the triggering relations existing in HTTP and DNS
requests in Fig. 1. After a user clicks a link to Financial Times
(http://www.ft.com), the browser first resolves the IP address by
sending out a DNS query.Corresponding HTTP requests are issued
after the IP address is known.Then, the user is directed to a news
page by clicking a link.The TRG forms a forest of trees that con-
sists of user events and network requests. For each tree in TRG,
we name its user event as a root-trigger.

We summarize the properties of TRG as follows.

• Attribute-based: Each event in TRG has multiple attri-
butes, describing its network and kernel information.

• Expandable: TRG is a forest of trees in arbitrary height. The
degree of a node in a tree can be expanded as it grows. The
legitimacy of the tree is determined by its root, i.e., the de-
pendent nodes are benign as long as the root is legitimate.

• Acyclic: The edge in each tree connected between two events
is unidirectional. Because of the temporal property of events,
triggering relation graphs are free of cycles.

• Sparsity: A TRG is usually sparse, i.e., the number of a node’s
neighbors compared to the total numbers of nodes is small.
The triggering relations occur in a short time range. Two
events rarely form the triggering relationship, if they are far
apart in terms of time.

The problem of triggering relation discovery is that given a set
of events, to construct the complete triggering relation graph
corresponding to the events. To solve this problem, one direc-
tion is to construct the TRG by incrementally inserting new
events to a partially well-formed TRG by predefined algo-
rithms.The algorithms need to be generated by domain experts
using the application specific knowledge. The other direction
is to adopt learning-based classifiers to infer the triggering re-
lations. The TRG comprises a plural of triggering relations
between two requests. Therefore, one can construct a com-
plete TRG by given the existence of edges between pairs of
nodes and the directions of the edges. We illustrate the TRG
construction operation in Fig. 2.

We, therefore, transform the problem of discovering trig-
gering relations among a set of events into discovering the

0:0:16.790
media.ft.com
…/arrow.gif

HTTP
0:0:16.790

media.ft.com
…/tick-small.png

HTTP

0:0:0.910
MouseClick - Left

0:0:1.660
www.ft.com

/

HTTP

0:0:3.597
s1.ft-static.com

/style/.../core.css

HTTP 0:0:3.597
s1.ft-static.com

…/nonArticle.css

HTTP 0:0:3.597
s1.ft-static.com

…/renderHead.js

HTTP 0:0:3.597
s1.ft-static.com

…/tracking.js

HTTP

0:0:2.240
s1.ft-static.com

AAAA/A

DNS

0:0:17.653
www.ft.com

…/js/psppricesjs.js

HTTP

0:0:16.040
media.ft.com

AAAA/A

DNS

0:0:17.653
www.ft.com

.../overlayBg.png

HTTP

……

……
……

0:0:0.910
MouseClick - Left

User

0:0:6.550
Mouse - Wheel

User

0:0:7.690
Mouse - Wheel

User

0:0:9.140
Mouse - Wheel

User

0:0:10.770
Mouse - Wheel

User

0:0:14.870
MouseClick - Left

User

Time

Timestamp
User Event Type

User

Timestamp
DNS Query
DNS Type

DNS

Timestamp
Host

HTTP Request

HTTP

Legend

0:0:1.240
www.ft.com

AAAA/A

DNS

0:0:15.290
www.ft.com
intl/world/us

HTTP

Fig. 1 – An example of triggering relation graph for outbound DNS and HTTP traffic on a host. The network and user events
are denoted as rounded squares. The arrows represent the triggering relations between events.

Fig. 2 – The triggering relation graph (TRG) on the right can
be constructed from the pairwise triggering relations on
the left.

182 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://www.ft.com

triggering relations of pairs of events, which is defined as the
pairwise triggering relation. In our context, the pairwise triggering
relation discovery is a simpler problem, which is to deter-
mine whether a triggering relation exists in two events. To this
end, we design a novel pairing operation that produces pairwise
features, so that the discovery problem can be efficiently solved
using classification tools. The main operations of rule- and
learning-based approaches in our solution are illustrated in
Fig. 3.

We further make a detailed comparison of properties
between these two triggering relation discovery approaches in
Table 1. The rule-based approach is only applicable for known
patterns, and requires non-trivial human efforts in rule gen-
eration and tuning. Yet the learning-based approach extracts
the pairwise features that can characterize the relationship
between nodes, and thus the generalized triggering relation
model adapts to diverse and complex patterns.

Our definition of event-level triggering relation relates to,
but differs from the definition of service dependency in ex-
isting research work (Natarajan et al., 2012; Zand et al.). Service
dependency refers to that one service that relies on another
to function, e.g., a web service depends on the DNS resolu-
tion. Our event-level triggering relation refers to the causality
of two events, e.g., the transmission of one network packet trig-
gers the transmission of the other.

2.2. Security applications of TRG

In our security model, network requests on TRG without valid
root triggers are referred to as vagabond requests. They are
anomalous events without legitimate causal relations, and likely
due to stealthy malware activities.

The definition of root triggers may vary. In a user-intention
based security model, the user-input actions serve as the root
triggers. The analysis can pinpoint network activities that are
not intended by users. Blocking these outbound malware
network activities effectively isolates the malware, including

• websites collecting and reporting sensitive user data, af-
fecting user privacy,

• spyware exfiltrating sensitive information through out-
bound network traffic from the monitored host,

• bots’ command-and-control traffic, and attack activities (e.g.,
spam or DoS traffic) originated from the monitored host.

We describe a scenario for using our tool to detect stealthy
outbound malware activities on a host. DNS tunneling has been
abused by botnets for command and control communica-
tions (Xu et al., 2013). These abnormal outbound DNS queries
are automatically generated by malware on the host, typi-
cally with the botnet-related payload. These surreptitious DNS
activities are difficult to detect, because of their format re-
semblance to regular DNS queries. Our analysis tool reasons
about the legitimacy of observed DNS traffic on a possibly in-
fected host. Legitimate DNS queries are usually issued by an
application (e.g., browser) upon receiving certain user inputs
(e.g., entering a URL into the address bar). The application then
issues additional DNS or other requests (e.g., HTTP, FTP). Botnet
DNS queries lack of any matching user triggers.

With a built TRG, more security policies can be proposed de-
pending on the host types (e.g., client or server), traffic types
(e.g.,HTTP,TCP,or mixed),and the definitions for network anoma-
lies.The inferred dependency in aTRG illustrates the logic chains
of the network requests, which reveals the origin and time range
of the malicious activities. Our model can be used in combina-
tion with conventional signature-based and statistic-based
detection. In Section 6.2.4, we further conduct an experiment
on a dataset that contains a DDoS attack,which shows our model
can be used as a complementary to existing solutions.

Our work on triggering relation discovery demonstrates a
specific big data security approach, where we are capable of
analyzing voluminous network traffic to identify anomalies.
These discovered relations produce structural and contextual
information for reasoning and justifying the occurrences of
system and network behavior patterns. The advantage of our
approach is the ability to provide proactive system defenses.

Fig. 3 – The system workflow containing major operations in the rule- and learning-based approaches.

Table 1 – Comparison of properties between rule-based and machine learning (ML) based approaches.

Approach Rule-based ML-based

Sub-goal To recognize parent–child relations based on event attributes.
Operation Rule generation, rule-based identification Feature extraction, train & test
Model Empirically derived rules Automatic generated
Labeled data No Yes (for training)
Manual effort Needed for generating rules Minimal
Major cost Rule tuning by human Pairing operation
Flexibility Low (cannot recognizes beyond rules) High (can adapt to subtle cases)

183c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

3. Rule-based discovery

We describe a rule-based approach in this section. The method
used is to identify the triggering relation between a new in-
coming event and existing events in a TRG.

A TRG can be constructed incrementally by inserting a new
network event with unknown dependency to a well-formed TRG,
which is suitable for real-time monitoring. The construction
of TRG relies on the attributes of events and dependency rules
derived from the specific application. In our work, we gener-
ate rules for discovering triggering relations of HTTP requests
on a host. Our rules are derived based on the patterns of user
interactions and the attributes of HTTP requests from the
browser including their system properties (Zhang et al., 2012).

3.1. Overview of rule-based discovery

Given a new request, the triggering relation discovery (TRD)
algorithm aims at identifying its dependence with respect to

the known requests. We construct a forest structure to store
the network requests and organize them according to the defi-
nition of TRG. The requests with known dependencies are
chronologically organized into trees rooted by user events in
the existing TRG. The root-triggers, thus, are also chronologi-
cally ordered.

The pseudocode of our rule-based triggering relation dis-
covery procedure is shown in Algorithm 1. A new tree is created
if the newly observed event p is a root request. Otherwise, ex-
isting trees are searched in reversed chronological order. The
searching is stopped if: i) the triggering relation of p is found,
so that it can be attached to an existing tree Ti; ii) no such tree
is found after all nodes on the TRG are compared, which in-
dicates p is a vagabond request, and thus suspicious. Based on
what our experiments have shown, the incoming new request
is commonly caused by recent requests and the trees in a con-
structed TRG. Therefore, our algorithm opts for a breadth-
first traversal within a tree starting from the most recent
root-triggers, a strategy that allows us to efficiently and effec-
tively identify the parent node of the newly observed request.

184 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

We further optimize the algorithm by avoiding unneces-
sary comparisons. We achieve the speedup by leveraging the
underlying consistency among attributes (e.g. PID). Besides, we
adopt the UpdateTime function to refresh the upTime for each
tree in T, in which way we can track the freshness of a tree
and skip the comparison between a newly coming request and
an out-of-date tree. The worst-case complexity of this TRD al-
gorithm requires traversing the entire TRG, and is O(n) where
n is the total number of network events on the TRG.

3.2. Details of classification rules

In the TRD algorithm (Algorithm 1), we instantiate three build-
ing blocks IsRoot, IsChild, and IsSibling to facilitate the process
of inferring triggering relations.

The IsRoot procedure is used to test whether or not a request
is the first one triggered by a user event. In the context of the
browser, traffic-inducing user events may include typing into
the address bar of the browser, clicking on a hyperlink or a book-
mark, opening a new window or tab, and reloading a webpage.
Therefore, the corresponding root request is the first imme-
diate outgoing network request that has the identical process
ID and with correlating content. The content may be the URL
of the hyperlink for a mouse click, which needs to match the
URL in the root request.

The IsChild procedure is used to test whether or not there
is a triggering relation (i.e., parent–child relation) between re-
quests. Given two requests, pa and pb, where pa is a node on
TRG with known dependency and pb’s dependency is unknown.
The event pa triggers pb if and only if the following conditions
are all satisfied:

• The interval between timestamps of pa and pb is within a
threshold τ and event pa proceeds pb.

• The two outbound network requests pa and pb share the
same (non-null) process ID.

• The domain name in pb’s referrer is identical to that of pa.

The IsSibling procedure is used for the nodes whose
parent nodes cannot be directly determined. Therefore, iden-
tifying the sibling relation of a request helps establish a
triggering relation by the transitivity. We are given two out-
bound HTTP requests pa and pb, where pa’s parent node is
known, pb’s parent is unknown, and pa proceeds pb. To deter-
mine whether pb is a sibling node of pa, we define the rules as
follows.

• The interval between timestamps of pa and pb is within a
threshold τ and event pa proceeds pb.

• The two outbound network requests pa and pb share the
same (non-null) process ID.

• Referrers of both requests are non-null and identical.

The IsSibling procedure is a necessary complement to the
IsChild procedure as IsSibling helps identify late-arriving child
nodes whose intervals of timestamps with respect to the
parents are larger than the specified threshold, yet whose in-
tervals with respect to the (older) sibling are still within the
threshold.

4. Learning-based discovery

We describe a machine learning approach to inferring trigger-
ing relations on network requests in this section. As compared
in Table 1, the learning-based solution provides a more adap-
tive solution than the heuristic rules. We introduce a scalable
feature extraction method referred to as pairing. This opera-
tion converts individual network events into event pairs with
comparable pairwise attributes. We then show how binary clas-
sification algorithms can be used for the triggering relation
discovery.

4.1. Overview of learning approach

The main operations in our learning-based method are Pairing,
Data Labeling, Training, Classification, and TRG Construction.
The Data Labeling, Training and Classification operations are
standard for machine learning based methods. The new op-
erations are Pairing and TRG Construction. Given an event e
(e.g. an HTTP request) that has one or more attributes (A1, … ,
Am) describing its properties, we elaborate the learning opera-
tions as follows.

• Pairing is a new operation that we design for extracting
pairwise comparison results (i.e., features) of events’ attri-
butes. Its inputs are two events e A Am= ()1, ,… and

′ = ′ ′()e A Am1, ,… . The output is the event pair (e,e′) with m
pairwise attribute values (B1, … , Bm), where a pairwise at-
tribute B i mi ∈[]()1, represents the comparison result of
attributes Ai and A′i.That is, B f A Ai i i i= ′(), , where fi() is a com-
parison function for the type of the i-th attribute in the
events. The comparison function fi() (e.g., IsEqual,
IsGreaterThan, WithinThreshold, IsSubstring, etc.) is chosen
based on the type of attribute. The feature construction can
be extended to comparing different traffic types. Pairing is
performed on every two events that may have the trigger-
ing relation. Moreover, we demonstrate an efficient pairing
algorithm and advanced strategies to reduce the cost of
pairing without compromising the analysis accuracy in
Sections 4.3 and 4.4.The pairwise features are used as inputs
to the subsequent learning algorithms.

• Data Labeling is the operation that produces the correct trig-
gering relations for the event pairs in a (small) training
dataset. A binary label (1 or 0) indicates the existence or non-
existence of any triggering relation in an event pair, e.g.,

e e, ,′() 1 represents that event e triggers e′. Data labeling
is based on pairwise attributes (e.g., B1, … , Bm) and may
require manual efforts.

• Training is the operation that produces a machine learn-
ing model with labeled training data.

• Classification is the operation to use the trained machine learn-
ing model to predict triggering relations on new event pairs
P = (){ }e ei j, . E.g., the outputs of binary prediction results are
in the form of e e li j ij, ,(){ }, where the binary classification
result lij ∈{ }0 1, represents whether event ei triggers ej in P .

• TRG Construction is the operation to build the complete trig-
gering relation graph based on pairwise classification results.
If event ei triggers ej in the event pairs P , then ei and ej are
connected by a directed edge in the TRG.

185c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

We describe and highlight the design details of our new
Pairing operation in this section. This feature extraction op-
eration is unique in that the features enable the use of binary
classifiers for pairwise directional relation discovery.

4.2. Pairing operation for feature extraction

The pairwise attributes are formed by aligning the same event
features and comparing the relevant ones (e.g., the request type
and the referrer type). Without loss of generality, we illus-
trate a basic pairing procedure with outbound HTTP network
events as an example.The approach can be generalized to other
event types. The pairing details are illustrated as follows.

• Numeric attributes (e.g., timestamps) are compared by com-
puting their difference, e.g., the interval between the
timestamps of two network events. That is, B A Ai i i= − ′.

• A nominal attribute (e.g., file type, protocol type) categorizes
the property of an event.Comparing nominal attributes usually
involves string comparison, e.g., substring or equality tests.

• For the string type of attributes, we compute the similar-
ity of the attribute values as the pairing attribute value.That
is, B f A Ai s i i= ′(), , where function fs is a similarity measure,
e.g., normalized edit distance. Take HTTP request as an
example, the similarity index can be computed between two
host domains, two referrer fields, and two request URLs.

• A composite attribute can be converted to primitive types,
e.g., a destination address containing four octets for the IP

address and an integer for the port. Therefore, the com-
parison of two composite attribute values is made by
comparing the sub-attribute values separately.

4.3. Efficient pairing algorithm

Given a list of n network events, the total number of event-
pair candidates is bounded by O(n2).To reduce the computational
cost, one may pair up events that occur within a certain time
frame τ, assuming that events occurring far apart are un-
likely to have triggering relations.

We describe the efficient pairing logarithm, a more sophis-
ticated pairing heuristic. It prescreens attributes to quickly
eliminate unqualified pair candidates. Shown in Algorithm 2, it
takes a list of chronologically sorted network requests as the
input and outputs a set of pairs of events. The efficient pairing
algorithm uses a dictionary to store the recent network events,
which are the candidates of triggers for the future events. The
key of the dictionary is the domain attribute of an event. The
value is a set of requests, whose domain attribute is same as
the key. Events with unmatched key values are filtered out (in
Screening function of Algorithm 2) and not stored or paired, re-
ducing both storage and computation overheads. As a result, a
much longer time can be used to retire a domain, providing a
more comprehensive coverage on pairs. It is confirmed from our
experiments that the efficient pairing algorithm significantly
reduces the size of pairwise data, without scarifying the detec-
tion accuracy.

186 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

4.4. Efficiency pairing using parallel computing

Pairing is a time-consuming operation step in the learning-
based approach. To improve the efficiency, we propose to
leverage two advanced strategies to reduce the running time.

4.4.1. Divide-and-conquer
Given a list of records R = { }r r rn1 2, , ,… , we divide R into k con-
secutive blocks and assign them to multiple machines. Each
host outputs are the intra-block pairs. For every two neigh-
bor blocks, we merge them and process pairwise comparisons
until all records have been paired. From the second iteration,
the task is the inter-block comparisons. The overall complex-
ity is still bounded by O(n2). However, the pairing computation
on disjoint data can be made parallel.

4.4.2. MapReduce
Using the same blocks described in the divide-and-conquer
method, we assign each host two blocks Ti and Tj (1 ≤ i ≤ j ≤ k)
as inputs. The hosts perform the pairing operation between
any two records a and b, where a ∈ Ti and b ∈ Tj. The outputs
are the intra-block pairs, if i and j are equal. Otherwise, the
outputs are the inter-block pairs.

The MapReduce framework is more suitable for the pairing
operation, as it is a type of data-intensive computation. The
divide-and-conquer approach is easy to implement on both
multi-thread and multi-host environments, while the work-
load issue may hinder its scalability.

4.5. Feature selection and cost matrix

We use two different feature selection algorithms, namely In-
formation Gain and Gain Ratio. Once a set of features is chosen,
we train and classify the data using three common super-
vised machine-learning classifiers – Naive Bayes, a Bayesian
network (John and Langley, 1995), and a support vector machine
(SVM) (Cortes and Vapnik, 1995).

Due to the sparsity of triggering relations existing in network
traffic, we leverage the customized cost matrices (Elkan, 2001)
to penalize missed relations during the training. In cost-
sensitive classifiers, the cost matrix can be defined to weigh
the false positive (FP) and false negative (FN) differently. A false
negative refers to the failure to discover a triggering relation.
A false positive means finding triggering relation in a non-
related pair.

Shown in Table 2, the cost matrix used in our model is
labeled by two categories: with triggering relation and without

triggering relation. The values in the matrix are the weights for
penalizing classification mistakes. We set positive values in the
cells for FNs and FPs. The cost-sensitive classification takes a
cost matrix as an input. The trained model aims at minimiz-
ing the total penalty in imbalanced datasets. For simplicity, we
show the values and omit the labels of the cost matrix. For

example,
0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

is a cost matrix that has no bias on FPs and

FNs;
0 1

10 0

,

,
⎡
⎣⎢

⎤
⎦⎥

penalizes the FNs 10 times more than FPs for a

classifier. In Section 6, we thoroughly evaluate how cost ma-
trices improve our analysis accuracy.

5. Root-trigger security policy

Given the parent node of each request using the rule-based
method, or given the predicted results of pairwise triggering
relations in the learning-based method, we can construct a trig-
gering relation graph (TRG). The graph serves as a source for
locating anomalous network activities.

The security policy defines the legitimate and abnormal
events, which can be used to analyze the TRG and make se-
curity decisions. A specific root-trigger security policy is based
on the user intention (Zhang et al., 2012), where a valid root trigger
should be related to a user activity (e.g., a function call to re-
trieve user inputs, mouse clicks, or keyboard inputs). Other
definitions for valid root triggers may be made according to
the specific applications.

Under the root-trigger security policy, one determines the le-
gitimacy of a network event e based on the legitimacy of e’s
root trigger, i.e., whether or not e has a legitimate root trigger.
Anomalous events are those without a valid root trigger, namely
the vagabonds. These events may be due to malware activi-
ties or server misconfiguration.

To enforce the root-trigger policy, we identify the root trig-
gers of all the events. Each node on a valid TRG should have
at most one parent, as per the TRG definition in Section 2.1.
With the results obtained from the TRD algorithm, it is un-
ambiguous to trace back to its root-trigger for each newly-
observed event. However, in the learning-based approach, the
pairwise classification results may lead to multiple parent
events. We, therefore, design a root finding algorithm to obtain
the root of an event, given all predicted pairwise triggering re-
lations. Shown in Algorithm 3, to find the root of each event
by traversal in TRG is equivalent to the transitive reduction of
a directed graph.

The inputs of the root finding algorithm are an event ek and
a set P* containing all the pairwise triggering relations

e ei j→(){ } . The output is a set R that includes all the roots of
ek. To compute the transitive reduction, we opt for a queue Q
to perform the breadth-first traversal of TRG. In each itera-
tion, we obtain the parent(s) T of a dequeued event n. For each
event e in the set T, we add e to the return set R if it is a root-
type event. Otherwise (i.e., e is an intermediate node on the
path from ek’s root to ek), the algorithm enqueues e onto Q for
further iteration. This analysis returns root triggers for the
network requests. Network requests without valid root trig-
gers, namely the vagabonds, are flagged and alerted to the
administrator for further inspection.

Table 2 – Semantics of values in a cost matrix.

Classified as

W/O TR With TR

Ground
truth

W/O TR TN: no penalty. FP: penalty for finding
triggering relations in
non-related pairs.

With TR FN: penalty for
failure to discover
triggering relations.

TP: no penalty.

Note: TR stands for triggering relation.

187c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

We illustrate the various cases where an event’s predicted
root trigger is correct (a-c) or wrong (d-g) on the TRG con-
structed from pairwise triggering relations in Fig. 4. Our root-
trigger policy allows the existence of multiple intermediate
parents for a node, as long as the root trigger is correct, e.g.,
Fig. 4c.

We infer the root-triggers by integrating the system and
network information. For example, we can log the applica-
tion information by a browser extension (e.g., Tlogger). The
browser extension provides browser and tab events that can
be used to identify the user-HTTP dependency and user-DNS
dependency. Besides, we adopt a heuristic method to infer the
root-triggers. The method determines root-triggers if the re-
quests are larger than B bytes and have at least T millisecond
away from the last root-trigger. The heuristic method applies
for the lower level protocols (e.g.,TCP) that are not easily linked
to user’s events.

We demonstrate the use of our method for detecting three
types of common malware in Section 6, including

• spyware as a browser extension,
• data-exfiltrating malware as a stand-alone process,
• a DNS-based botnet command and control channel,
• a remote break-in due to the software vulnerability.

6. Evaluations and results

We implemented our solution and evaluated using different
types of network data. We have conducted extensive tests on
our triggering relation analysis and obtained positive results.
The questions we seek to answer through our experiments are:

• How accurate is our learning-based approach for inferring
the triggering relations on different types of network traffic?
(Section 6.2)

• Can our solution detect outbound network activities caused
by stealthy malware and real-world threats? (Section 6.3)

• Comparison to the rule-based TRD algorithm, how well does
our machine learning approach perform? (Section 6.4)

• How efficient is the learning-based approach? What is the
most time-consuming operation in learning-based ap-
proach? (Section 6.4)

6.1. Experimental overview

We describe the setup of our experimental evaluation in this
section. Then, our evaluation results are presented in the next
few sections.

6.1.1. Datasets
Our evaluation is mainly focused on the network traffic via
HTTP and DNS protocols, which are commonly used commu-
nication protocol both by legitimate users and attackers, and
most firewalls allow them (Xu et al., 2013). Because of the
privacy concerns (e.g., most application layer requests are in
plain text), there is no known public data source that in-
cludes both HTTP traffic and user’s inputs, so we have to collect
data on our own. We collect and analyze outbound HTTP and
DNS requests from hosts, aiming to detect suspicious activi-
ties by stealthy malware. Additionally, we adopt our approach
on a DARPA dataset (MIT Lincoln Laboratory). This dataset con-
tains network requests over multiple subnets and it is originally
created for assessing the intrusion detection systems. Last, we
evaluate the scalability of our learning-based approach with
a much larger TCP dataset collected from a server. The details
of data collection are listed as follows.

• Dataset I (HTTP). We collected the user events and out-
bound HTTP traffic in a user study with 20 participants. Each
participant was asked actively surf the web for 30 minutes
on a computer equipped with our data collection program.

• Dataset II (DNS and HTTP). We used tcpdump to continu-
ously collect the outbound DNS queries and HTTP requests
on an active user’s workstation for 19 days. We collected
types A/AAAA DNS queries and the outbound HTTP re-
quests that contain valid GET, HEAD, or POST information
in the headers.

• Dataset III (UDP and TCP).The dataset includes a DDoS attack
scenario. The attackers first performed IPsweep and probed
the hosts that run the Sadmind service. Then, three hosts
got infected and were installed malicious scripts. Last, at-
tackers launched a DDoS attack from the victim machines.
In this experiment, we focus on our detection to the indi-
vidual host and verify whether our method could be used
for identifying the break-ins on each host.

• Dataset IV (server TCP traffic). We collected TCP packets on
an active Linux server in a research lab. The inbound and
outbound TCP packet headers were collected for 42 days
using tcpdump.

A summary of the experimental data is shown in Table 3.
In dataset I, we manually check the legitimacy of vagabond re-
quests after running TRD Algorithm. In dataset III, the malicious
requests are labeled based on the IDMEF alerts and audit logs
(MIT Lincoln Laboratory). In datasets II and IV, we set up a
firewall, run antivirus software and install a commercial IDS
when collecting the data, so we assume the collected data are
clean.

Fig. 4 – The illustration of various cases where B’s predicted
root trigger is correct (a–c) or wrong (d–g) on the triggering
relation graph constructed from pairwise triggering
relations. Let the ground truth of B’s root trigger be A. Case
(a) is where B’s parent is also B’s root. Cases (b) and (c) are
where there are one or more paths from the single root A to
B, respectively. Cases (d), (e), and (f) are where the predicted
root of B is or includes a node other than A (e.g., E). Case (g)
is where the predicted root of B is null, i.e., no root-trigger.

188 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

6.1.1.1. Effectiveness of EPA. We define η ∈ [0, 1] as the reduc-
tion percentage in Equation 1, where EPA(n) is the number of
event pairs after using the efficient pairing algorithm in Section
4.3, and n is the total number of events.

η = − ()
× −()

1
1 2

EPA n
n n

(1)

6.1.2. Pairwise feature extraction on network data
The pairwise features are defined based on the features of the
traffic types. We summarize the categories of pairwise fea-
tures in Table 4. The comparison between two addresses (IP
and port) and the temporal relation are commonly used for all
types of network traffic.

For transport layer protocols, the extracted features are ob-
tained in two categories: i) the relationship between two
protocols (e.g., co-occurrence, succession, etc), which de-
scribes whether the protocol is kept the same and how protocol
is changed from one to the other; ii) the comparison between
control bits/flags, for example, the SYN and ACK values, the
Length of a packet and the MSS (maximum segment size) of
a session.

For application layer protocols, besides the aforemen-
tioned ones, we extract the pairwise features that have semantic
meanings, e.g., the similarity between two request URLs, two
referrers, and a domain and a DNS query. This type of fea-
tures includes human-readable languages and can be analyzed
using string comparison and advanced natural language pro-
cessing techniques. In addition, the aggregate information over
time is particularly useful to decide the triggering relation-

ship, when there are some missing or incomplete values in the
packet. All pairwise features are finally chosen by two feature
ranking algorithms (InfoGain and GainRatio). In our evalua-
tion, we select the most contributive features with the cut-
off value 0.01.

6.1.3. Classification setup of learning-based method
Three common classification techniques are compared: naive
Bayes classifier, a Bayesian network, and a support vector
machine (SVM).1 Due to the sparsity of triggering relations in
network traffic, we define a cost matrix that penalizes classi-
fying false negatives more than classifying the false positives.
Classification and TRG construction operations are imple-
mented in Java using the Weka library. We perform both 10-
fold cross validation and train-n-test types of evaluation. The
two evaluation methodologies yield similar classification results.
We report the train-n-test results, unless otherwise specified.

6.1.4. Accuracy and security metrics

• The conventional precision and recall measures (Baeza-Yates
et al., 1999) evaluate the classification accuracy of the posi-
tives (i.e., the existence of triggering relations). In the
equations below,TP, FP, and FN stand for true positives, false
positives, and false negatives, respectively.

Precision
TP

TP FP
Recall

TP
TP FN

=
+

=
+

, . (2)

1 SVM has a polynomial kernel function with a degree of 2.

Table 3 – An overview of four datasets in the experiments.

Dataset I II III IV

Type HTTP DNS (D) & HTTP (H) TCP & UDP1 TCP
of raw events HTTP: 45,988 D: 35,882; H: 85,223 All types: 649,787 TCP: 3,010,821
Efficient pairing (η)2 94.7% 98.8% 96.8% 99.6%
of event pairs 3,436,635 953,916 47,215,275 119,372,631
of root-triggers 899 2,795 21,416 45,960
Size (MB) 229.5 55.1 3441.3 6697.1
TR labeling3 TRD (Algo. 1) TRD + rules TCPFLOW (TCPFLOW 1.3) TCPFLOW
RT labeling4 Tlogger (Tlogger) Tlogger Rules Rules
1
Dataset III contains 33 different protocols, including TCP, UDP, DNS, and etc.

2η is the reduction percentage after using our efficient pairing algorithm (EPA).
3
TR labeling describes the methods to label triggering relations (TR), e.g., rule-based TRD, TCPFLOW, or other rules (integral analysis of user-
HTTP dependency and DNS-HTTP dependency for Dataset II).

4
RT labeling describes the methods to label root-triggers (RT), e.g., Tlogger and the heuristic rules mentioned in Section 5.

Table 4 – Pairwise features defined on different types of network protocols in pairing operation.

Protocol Feature category Illustrations of pairwise features

All types Address difference Comparison between two IPs/ports
Temporal relationship Time difference, session duration, delta time

Transport layer Protocol difference Comparison/relationship between two protocols
Flag difference Comparison between control bits/flags in headers.

Application layer Semantical similarity Similarity between two request URLs/referrers/domain.
File type difference Comparison between file types (e.g., request and referrer).
System info. difference Comparison between system attributes (e.g, PIDs).
Aggregate info. # of the duplicated domains/referrers/DNS queries.

189c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

• The pairwise accuracy of classification is the percentage of
pairwise triggering relations that are predicted correctly by
using machine learning classifiers. The pairwise accuracy
is evaluated with respect to the ground truth.

• The root-trigger correctness rate is computed based on the root
of a node. It is the percentage of events whose roots in the
(constructed) TRG are correct with respect to the ground
truth. The metrics allow the existence of one event having
multiple paths to the same root in a TRG, which applies to
both rule- and learning-based approaches.

6.2. Evaluation of our learning-based approach

We present our experimental findings using the learning-
based approach on different types of network traffic (e.g., HTTP,
DNS, and TCP) in this subsection.

6.2.1. Evaluation on dataset I

6.2.1.1. Accuracy of pairwise triggering relations. Table 5 shows
a high prediction accuracy rate for pairwise triggering rela-
tions. These results indicate the effectiveness of our binary
classification approach.

We vary the cost matrices and compute the pairwise ac-
curacy rates of the three classifiers. The results are shown in
Fig. 5a. The accuracy rate is consistently high for naive Bayes
classifier, despite the changes of cost matrices. Bayesian network
and SVM respond differently to the changes of penalty values
in cost matrices. In Table 5, we report the accuracy results under

the cost matrix of
0 1

10 0

,

,
⎡
⎣⎢

⎤
⎦⎥
.This matrix gives 10 units of penalty

to a false negative and 1 unit of penalty to a false positive for
the pairwise classification.

6.2.1.2. Correctness of root triggers. The purpose of this analy-
sis is to identify the reasons for wrong predictions of root
triggers. Running the root finding algorithm (in Section 5) on
the predicted triggering relations, we obtain the root-triggers
of all events and compare them with the ground truth. Fig. 5b
shows the correctness of root-trigger analysis under differ-
ent settings (classifier and cost matrices). The naive Bayes and
Bayesian network classifiers yield nearly 100% accuracy of
finding the root triggers, both of which are not very sensitive
to the cost matrices. In contrast, the accuracy of SVM in-
creases significantly with increased false negative penalty in

the cost matrix. In Table 6, we summarize the results of root
trigger correctness for dataset I. Our prediction of events’ root
triggers is accurate. It has a very small error rate, as low as
0.06%.These errors in finding root triggers generate false alerts.
Wrong root triggers are mostly because of missing attributes
in the original data or late-arriving requests. We further analyze
false alerts later.

6.2.2. Detection of malicious traffic in dataset I
As defined in Section 5, vagabond events are those that do not
have any valid user events as their root triggers. There are total
1.2% vagabond HTTP requests in dataset I. Some of them are
malicious traffic to known blacklisted websites. Our analysis
finds in dataset I that among these vagabond events, there are
169 suspicious requests sent to 36 distinct domains. Manual
inspection reveals that these requests are to tracking sites,
malware-hosting or blacklisted sites, and aggressive adware.
They are partly due to users visiting compromised websites.
For example, some requests track the user’s cookies and send
back to remote hosts with known blacklisted sites (e.g., 2o7.net,
imrworldwide.com). We analyze the geographic locations of the
malicious servers based on their IP addresses. All of them are
located in the US, except one IP located in Netherlands.

In our model, some vagabond requests are false alerts (i.e.,
requests without proper triggers), but are legitimate/benign.
False alerts in dataset I are due to four main reasons:

• Automatic and periodic system and application updates that
occur without user triggers. In dataset I, there are 157 update
requests that are sent to 13 well-known legitimate domains.
Whitelisting can be used to eliminate these alerts.

• Missing or incomplete attributes in the original data due
to server configuration, e.g., redirection without properly
setting the referrer field. There are 244 misconfigured re-
quests that are sent to 38 different domains, usually image/
video hosting websites.

• Unconventional attribute values, e.g., requests to
googlesyndication.com (for Google Map) usually have long
referrers that our prototype does not expect.

• Requests sent out much later than their parent request
trigger, e.g., requests for bookmark icons.

Reducing false alerts can be achieved through more so-
phisticated inference methods under incomplete information,
which will be investigated in our future work.

Table 5 – Pairwise classification results of train-n-test for four datasets.

Data # of pairs in test sets Cost matrix Naive Bayes Bayesian network SVM

Prec. Recall Prec. Recall Prec. Recall

I 3,318,328 0 1

10 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0.954 0.996 0.956 0.996 0.958 0.997

II 693,903 0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0.959 0.998 1.000 1.000 1.000 1.000

III 25,694,154 0 1

30 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0.996 0.971 0.996 0.984 0.996 0.965

IV 1,191,926,877 0 1

3 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0.995 0.986 0.997 0.998 0.998 0.999

Note: Results are rounded before reporting. Prec. stands for precision in the pairwise classification.

190 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://2o7.net
http://imrworldwide.com
http://googlesyndication.com

Fig. 5 – Accuracy and correctness results under various cost matrix conditions for datasets I, II and III. The results of
pairwise accuracy are shown in (a, c, e). The results of root-trigger correctness are shown in (b, d, f).

191c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

6.2.3. Evaluation on dataset II
The goal of the experiment on dataset II is to find the trigger-
ing relation in traffic with mixed types, such as DNS and HTTP
requests.

6.2.3.1. Pairwise classification accuracy. The pairwise classi-
fication results on dataset II are presented in Table 5. All three
methods give high pairwise classification accuracy rates, con-
firming our method’s ability to discover triggering relations in
mixed traffic types. Bayesian network and SVM yield better
results than naive Bayes classifier, indicating that there are de-
pendencies among attributes.

The pairwise classification accuracy under various cost ma-
trices is shown in Fig. 5c. Bayesian network and SVM
consistently give high classification accuracy. In contrast, the
performance of naive Bayes classifier decreases, as the cost
matrix penalizes FNs more than FPs. We highlight the pairwise

classification accuracy results under the cost matrix
0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

in Table 5.

6.2.3.2. Correctness of root triggers. We analyze the root-
trigger accuracy for dataset II, and show the results in Fig. 5d.
The root-trigger accuracy is high when using all three classi-
fiers, with Bayesian network and SVM outperform the naive
Bayes. We report the root-trigger correctness results under the

cost matrix of
0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

in Table 7.

6.2.4. Evaluation on dataset III
Dataset III (DARPA dataset) contains the network traffic col-
lected from multiple subnets. We focus on three hosts that are
compromised by attackers and report the results by weight-
ing the number of requests on each host.

6.2.4.1. Pairwise classification accuracy. Results in Table 5 show
a high prediction accuracy rate for pairwise triggering rela-
tions. The precision results are all above 0.99, while the recalls

vary. By investigating the dataset, we found that the major
reason of false positives is due to the change of protocols in
one TCP session. Packets that have triggering relations with
others usually share the same network protocol. However, in
some rare cases, a packet using protocol A may trigger the
another one using protocol B, especially when protocol A is a
general one (e.g., TCP) and protocol B is a specific one (e.g.,
TELNET, SMTP and RSH protocols). A possible solution is to use
features (in a vector) to characterize the change of protocols
in a finer granularity, so that the classifiers can learn the
patterns.

According to Fig. 5e, the Bayesian network classifier
yields the highest pairwise accuracy among the three tools
and it achieves the best accuracy rate using the cost matrix

0 1

30 0

,

,
⎡
⎣⎢

⎤
⎦⎥

. For the two other classifiers, the pairwise accuracy

results decline as the penalty of false negatives goes
larger.

6.2.4.2. Correctness of root triggers. We run the root finding al-
gorithm on dataset III to infer the root-triggers for each packet.
Results show that the Bayesian network and SVM achieve better
accuracy in finding the root-triggers, while the naive Bayes-
ian classifier does not present a good prediction result, which
is mainly due to the dependence of features in dataset III.
Shown in Fig. 5f, the high root-trigger correctness results occur

when using the cost matrices
0 1

50 0

,

,
⎡
⎣⎢

⎤
⎦⎥
,

0 1

70 0

,

,
⎡
⎣⎢

⎤
⎦⎥

and
0 1

90 0

,

,
⎡
⎣⎢

⎤
⎦⎥
.

Further, we find that the results of the root-trigger prediction
are not consistent with the pairwise accuracy results. In other
words, the low pairwise accuracy results do not affect the
result of root-trigger prediction, especially when increasing the
penalty of false negatives in cost matrices. The reason is that
the results of pairwise classification may be redundant or in-
accurate, regarding the inference of root-triggers. Therefore, as
long as an event can be traced back to its root according to the
predicted classification results, the classifier is accurate re-
garding the root-trigger correctness.

Table 6 – Correctness of root triggers in Dataset I.

Naive Bayes Bayesian network SVM

Cost matrix 0 1

10 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0 1

10 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0 1

100 0

,

,
⎡
⎣⎢

⎤
⎦⎥

Correct (case a–c) 99.94% 99.94% 99.37%
Wrong (case d–f) 0.00% 0.00% 0.28%
Wrong (case g) 0.06% 0.06% 0.35%

Note: Cases (a–g) refer to the various predicted root-trigger outcomes in Fig. 4 in Section 5.

Table 7 – Correctness of root triggers on Dataset II.

Naive Bayes Bayesian network SVM

Cost matrix 0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

0 1

1 0

,

,
⎡
⎣⎢

⎤
⎦⎥

Correct (case a–c) 98.44% 100.00% 100.00%
Wrong (case d–f) 1.37% 0.00% 0.00%
Wrong (case g) 0.19% 0.00% 0.00%

Note: Cases (a–g) refer to the various predicted root-trigger outcomes in Fig. 4 in Section 5.

192 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

We further introduce a new policy for detecting the mali-
cious root-triggers, after finding the root-triggers using
Algorithm 3. The policy is a heuristic one and based on our ob-
servations on dataset III. We highlight the high-risk protocols
based on their frequencies and patterns of occurrence. In this
policy, we found that network packets via Portmap protocol
(port = 111) immediately followed (<0.1 s) by the Sadmind pro-
tocol (port = 32773) are malicious, which can be regarded as the

period of infection. Besides, we discovered that the Portmap
and Sadmind protocols occurred three times in a short period
(<10 s) and the packets from an external IP (202.77.162.213) after
each period are related to malicious activities (e.g., remote buffer
overflow for rooting shell). This experiment suggests that data-
specific security policies are more effective than general purpose
ones. We show our model could be integrated with refined poli-
cies to detect malicious activities in the early age.

6.2.5. Evaluation on dataset IV
For dataset IV, the goal of the experiment is to find the trig-
gering relationship on a large scale of data.The dataset contains
both inbound and outbound TCP packets. The precision and
recall results are given in Table 5. All three classifiers yield high
pairwise accuracy rates, with the Bayesian network (99.72%)
and SVM (99.82%) outperforming the naive Bayes classifier
(98.92%). Performance results are reported in Section 6.4.

6.3. Evaluation of stealthy malware activities

To test the effectiveness of our solution, we evaluate several
pieces of proof-of-concept and real-world malware. Results show
that the all HTTP-based malware and DNS bots in our experi-
ments are detected without triggering any false positives or
false negatives.

6.3.1. Malicious browser extension
We write a proof-of-concept malicious Firefox extension, which
is a piece of password-stealing spyware. The malware sends
the username and password when a user clicks on the Submit
button in the browser. This spyware is similar to the existing
spyware such as FormSpy and FFsniff. A victim user clicks the
Submit to log on to various email services and Internet forums.
The spyware requests, which contain the username and pass-
word in the HTTP request (/query?id=user_id&ps=password),
are sent to its destination host. With our triggering relation
model and root-trigger policy, all malicious HTTP requests are
detected. However, the default Windows Firewall does not alert
the data leaks.

6.3.2. Data exfiltrating malware
We write another proof-of-concept data-exfiltrating malware.
This malware runs as a stand-alone process, similar to the Pony
bot (Pony botnet). It sends out the HTTP GET/POST requests
with system information to remote servers.The malware is pro-
grammed to transmit its payload right after the occurrence of
a user event on the host, attempting to hide its communica-
tion among legitimate outbound traffic. The malicious
communication may be a single request or a series of HTTP
requests. Our approaches successfully detect the network ac-
tivities of the malware in that the malicious outbound requests
do not have valid triggering relations, i.e., the requests lack of
any user event as the root-trigger.

6.3.3. Detection of real-world malware
We find and investigate several pieces of real world malware.2

We obtain the malicious requests by running the malware or
synthesizing the traffic on a controlled virtual machine. To
evaluate the capability of our traffic dependence analysis, we
overlay the malicious traces to the normal traffic in dataset I.
The malicious software is summarized below.

• Apache Qpid 0.30 Vulnerability: Remote attackers can trigger
outgoing HTTP connections by a crafted message, due to
the vulnerability in its XML exchange functionality.
(CVE-2014-3629)

2 Most malware samples are found at packetstormsecurity.com.

193c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://packetstormsecurity.com

• Microsoft CryptoAPI Design Bug: Attackers can trigger HTTP
requests due to a design bug in X.509 certificate chain vali-
dation. (CVE-2013-3870)

• Zend Framework vulnerability: It allows attackers to open
files and trigger HTTP requests to leak information, due to
the misuse of the PHP XML parser. (CVE-2012-5657)

• Linux/Cdorked.A: The servers affected by this backdoor re-
direct clients to a malicious website hosting a Blackhole
exploit kit. After a series of redirects, a piece of malware
is downloaded on the victim’s computer via a GET request.

• MorXBrute Password Cracker: It is an HTTP dictionary-
based password cracking tool. It supports users to customize
their payloads to any specific HTTP software or websites (a
password cracker).

All the network activities due to malware or software bugs
are detected as vagabonds.These packets are either GET or POST
requests. We run our solution on this dataset that the benign
requests are interleaved with the malicious ones. Our solu-
tion can successfully detect the malicious requests, as they are
not associated with any legitimate user’s event or benign traffic,
per the root-trigger security policy.

6.3.3.1. Comparison to conventional firewall. To detect the
malware, most current solutions adopt the signature-based
scanning, which requires the known of the malicious signa-
tures. In our experiment, we collected the malicious/
unauthorized network requests on a controlled virtual machine.
We note that only a small portion (<9%) of requests sent to ma-
licious host is reported by the Windows Firewall.These requests
are triggered due to the server backdoor vulnerability (e.g., Linux/
Cdorked.A). Most malicious requests are not reported and
blocked. Therefore, we speculate that the blacklist in Windows
Firewall is limited and the malicious domains are ever-
changing. In our solution, we detect the malware’s behaviors
regardless the source code and functionality of the malicious
software. Therefore, our solution is good to identify zero-day
attacks that trigger unintentional network requests.

6.3.4. DNS bot detection
Botnet command and control channel using DNS tunneling
(DNScat) is extremely stealthy and difficult to detect (Xu et al.,
2013). We write a proof-of-concept bot that communicates with
its bot master by tunneling command and control messages
in DNS traffic. The bot generates carefully crafted outbound
DNS queries whose payload contains encoded data, e.g.,
d1js21szq85hyn.cloudfront.net. We overlay the bot queries with
a 2-hour DNS-HTTP traffic data (from dataset II), and then ana-
lyzed using our learning-based solution. Our evaluation confirms
that our method successfully recognizes all the bot DNS queries
as anomalies. These DNS queries do not have valid user-
event root triggers.

6.4. Comparison between rule-based and learning-based
approaches

The rule-based approach needs non-trivial human efforts to
generate rules and algorithms. To compare with the results of
our learning-based approach in Section 6.2.1, we present our
evaluation of the rule-based solution on the dataset I. We infer
the triggering relations by running the TRD algorithm (Algo-
rithm 1) as a baseline method.

We calculate the percentage of requests whose triggering
relations are inferred by IsRoot, IsChild, and IsSibling, respec-
tively. The results in Table 8 show that most of the dependent
relations (87.4%) are inferred by the IsChild procedure. Because
the heuristic rules are generated based on the definition of trig-
gering relation, the relations found by the TRD algorithm are all
correct.

We inspected the requests that are missing triggering re-
lation (2.1% in Table 8) based on the ground truth. We find that
the precision of finding vagabond is about 60%, while the recall
is 100%.The low precision is mainly due to the failure of finding
triggering relations for some corner cases on the diverse and
complex HTTP traffic data (e.g., heavy use of AJAX technique
results in late-arriving packets). The recall is 100% because all
malicious requests are flagged vagabonds by our TRD algorithm.

The root-trigger correctness of rule-based approach is 98.72%,
which is less than that of the learning-based one (99.94% in
Table 6). According to the rule-based TRD, most wrong root-
trigger cases are due to the missing triggering relation for
corners cases. One can always obtain better results by a hand-
tuned algorithm, but this requires significant efforts from the
domain experts. In contrast, the learning-based approach
enables the triggering relation inference by using the pairwise
features, which can precisely describe the corner cases from
multiple dimensions.

6.4.1. Performance of rule- and learning-based approaches
All runtime results are obtained on a machine with Intel i5-
3320 and 16 GB RAM. We measure the runtime on the dataset
I to compare the performance for inferring the root-trigger on
1000 requests. Results show that it takes 2.68 s to run TRD al-
gorithm per 1000 requests, while it takes 0.30 s using a Bayesian
network classifier and the root-trigger policy.

6.4.2. Performance breakdown of learning-based approaches
We further investigate the performance of all processing op-
erations across three classifiers. For each dataset, we report the
runtime of Pairing, Training, Classification, and the root finding
algorithm. The runtime of each operation is averaged from five
runs and reported in Table 9. Standard deviations are negli-
gible and not shown.

Shown in Table 9, the Training, Classification, and root finding
algorithm are fast. The Pairing operation is the most time-

Table 8 – Percentages of triggering relations inferred by different subroutines of rule-based TRD on Dataset I.

Category Triggering relation discovery (TRD) TR not found

IsRoot IsChild IsSibling Total

Percentage 1.9% 87.4% 8.6% 97.9% 2.1%

194 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://d1js21szq85hyn.cloudfront.net

consuming task in our solution.To extract the pairwise features
on 42 days of a server’s TCP data (dataset IV), it takes as long
as 2 hours to generate the pairs from 3 million TCP mes-
sages. Our experiments have determined that on a single day,
at most 200 MB of pairwise data can be generated from a serv-
er’s TCP packet headers. As for the processing time, generating
the daily pairwise data takes only 3 minutes on average, in-
dicating that our method is efficient enough for practical use.

6.5. Summary

We summarize our findings below.

• Bayesian network (BN) classifier outperforms the naive Bayes
one, indicating the existence of dependencies in pairwise
features. Both BN classifier and SVM yield high pairwise ac-
curacy rates on all datasets, while SVM has higher runtime
overhead than BN in general.

• Precision and recall metrics are more sensitive to the quality
of the classification results than the pairwise accuracy metric.
The fundamental reason for this difference is the sparsity
of the triggering relations, which results in different sizes of
the denominators in these metrics. The detection accuracy
can be improved by strategically defining the cost matrix.

• Our triggering relation analysis successfully reveals all the
outbound traffic to 36 malicious domains, i.e., with zero false
negative rate. Our solution also detects the stealthy network
activities from several HTTP-based malware and DNS bots.

• The rule-based algorithm is inferior to the machine learn-
ing classification, in that the results show a low precision
rate in finding vagabond requests. The coverage of various
cases in TRD algorithm is crucial to determine the trigger-
ing relations in complex scenarios, so one needs manual
efforts to generate a well-designed algorithm to obtain
equivalent good results as the learning-based method does.

• With the proof of evaluations on datasets III and IV, our trig-
gering relation model can be generalized to the events on
the transport layer. The rationale of triggering relation-
ship for a particular type of events determines the pairwise
features. In the DARPA data (dataset III), we show the po-
tential use of our model with other mining approaches/
protocols for analyzing complex cases.

7. Related work

There exist solutions for discovering application or service de-
pendencies for management and reliability purposes (Bahl et al.,

2007; Chen et al., 2008; Kandula et al., 2008; Keller et al., 2000;
King et al., 2005; Natarajan et al., 2012; Zand et al.). This line
of research differs from our work in two main aspects. De-
pendency in these models refers to the reliance on services
provided by others, not the triggering relation. Furthermore,
our request-level triggering relations is more fine-grained than
service- or application-level dependencies.

ReSurf (Xie et al., 2013), as the closest related work, aims at
reconstructing web surfing activities from traffic traces via an
analysis of request headers.The heuristic in ReSurf is a referrer-
based approach. Our rule-based approach differs from theirs in
two aspects. First, our proposed TRG is a more accurate model
as we identify the triggering relations between any two web re-
quests,while ReSurf does not tell the relations when a web object
(e.g., an advertisement request) is commonly triggered from dif-
ferent root requests. Second, ReSurf identifies the head HTTP
request by heuristic rules, while our solution precisely points
out the triggering relations between user event and its triggered
request by a browser extension, which guarantees the accuracy
of our root-trigger policy. BINDER (Cui et al., 2005) detects break-
ins on personal computers through analyzing the dependency
of network events based on temporal and process information.
BINDER processes the network events without inspecting its
content, while our methods can semantically analyze and infer
the triggering relation of network data.Our work describes a more
specific user intention-based policy that supports application-
specific dependence analysis with a much finer granularity.

The research on the interplay between human behaviors
and system properties has been studied in the context of
anomaly detection. ClickMiner (Neasbitt et al., 2014) is pro-
posed to reconstruct user–browser interactions from network
traces by actively replaying the recorded HTTP traffic within
an instrumented browser. Unlike our model, ClickMiner focuses
on user–browser interactions that cause the browser to initi-
ate an HTTP request for a new web pages; therefore, it builds
the referrer graph by pruning away the automatically gener-
ated requests. Besides, the applications of ClickMiner include
aiding the forensic analysis of network incidents and identi-
fying the malicious download, while our solution aims at
detecting general malware activities that are not attributed to
user’s interactions. Not-A-Bot (Gummadi et al., 2009) is a system
for authenticating traffic-generating user inputs such as mouse
clicks on hyperlinks. It can be used for defeating DDoS attacks
as well as click fraud. However, it does not analyze the trig-
gering relations among network packets for anomaly detection
as our solution does. In our root-trigger security policy, all ap-
plication level requests should be attributed to legitimate user
events, which distinguishes ours from their solution.

Table 9 – Averaged performance (in seconds) of pairing, training, classification, and root finding algorithm in the
learning-based approach.

Data Pairing Training Classification Root Finding

NB BN SVM NB BN SVM

I 965 0.8 1.9 5.9 15.9 14.8 13.2 1.6
II 603 1.7 2.1 10.4 3.2 2.8 5.1 0.6
III 3218 14.8 16.0 39.7 225.5 230.0 268.0 18.9
IV 7633 16.3 19.8 245.6 411.9 402.6 426.9 –

Note: NB and BN stand for naive Bayes and Bayesian network classifiers, respectively. Pairing time includes the pairwise feature extraction.

195c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

Previous studies proposed tools (e.g., WebTap (Borders and
Prakash, 2004), WebShield (Li et al., 2010), SpyProxy (Moshchuk
et al., 2007)) to ensure the web security and detect HTTP-
based malware. WebTap (Borders and Prakash, 2004) is a tool
to identify anomalies by identifying changes and deviations
in aggregated flows patterns in terms of usages with statisti-
cal metrics. Both SpyProxy and WebShield proposed the
execution-based web content analysis, so the web contents can
be tested before reaching to user’s browser. Their solutions are
used to detect server-side malicious web content, whereas ours
is focused on client-side anomalies. Other host-based anomaly
detection solutions (Babić et al., 2011; Kolbitsch et al., 2009) focus
on learning and generalizing from observed malware behav-
iors, for example, Babic et al. analyzed the malware behavior
using tree automata inference in (Babić et al., 2011), Kolbitsch
et al. built a behavior graph to tackle the malware’s obfusca-
tion and polymorphic in (Kolbitsch et al., 2009). Our work
substantially differs from theirs, as we do not analyze malware
on the system level, but pinpoint the stealthy malware’s com-
munication by isolating it from the normal one.

Machine learning approaches have been widely adopted in
the security literature, since the work by Lee et al. (1999). Using
learning-based approaches to classifying the network traffic
and detecting threats has been reported in Bilge et al. (2011),
Erman et al. (2007), Moore and Zuev (2005), Nguyen and
Armitage (2008), Williams et al. (2006), Xie et al. (2010), and
Zomlot et al. (2013). Compared to these aforementioned so-
lutions, our approach utilizes classifiers to infer the relations
between events, while theirs classify the events on an indi-
vidual basis. The uniqueness of our work is the ability to
automatically extract and recognize directional relations and
structures.

Our triggering relation discovery problem may bear super-
ficial similarities to the link prediction problem in the context
of mining social network data (Backstrom and Leskovec, 2011;
Getoor and Diehl, 2005; Kahanda and Neville, 2009; Liben-Nowell
and Kleinberg, 2007). Getoor and Diehl (2005) surveyed the link
mining problem and pointed out the sparsity in linked data.
Liben-Nowell and Kleinberg (2007) formalized the link predic-
tion problem and surveyed an array of methods on measuring
the proximity of nodes in a network. Follow-up research applied
advanced machine learning methods to social network data.
These advanced methods include logistic regression, deci-
sion tree, and naive Bayesian (Kahanda and Neville, 2009) as
well as supervised random walks (Backstrom and Leskovec,
2011). Besides the obvious semantic differences in the two prob-
lems, our work differs from social network link prediction.

• Links in social networks connect nodes that are consid-
ered equivalent by a given logical relationship. However in
our model, links are triggered by a hierarchical relation-
ship between nodes. This conceptual difference makes it
possible for our model to create pairwise features for finding
the semantic relations, rather than analyzing the similar-
ity of the nodes, or the link strength in a network.

• Our TRG construction operation and root-trigger security
analysis are unique and beyond the link prediction type of
inference problem.To detect the ever-changing malware, our
model can be further extended by applying more sophis-
ticated security policies.

8. Conclusions

We introduced the problem of triggering relation discovery in
network traffic and described its application in solving chal-
lenging network security problems, such as stealthy malware
detection. We designed, developed, and compared both rule-
and learning-based approaches for triggering relation discov-
ery. Our evaluation on 10 + GB data (real-world and DARPA
datasets) showed a high accuracy of the triggering relation pre-
diction using the learning-based classification. Experimental
results confirm the effectiveness of our traffic-reasoning tech-
nique against browser spyware, DNS bot, and data exfiltrating
malware.

R E F E R E N C E S

Babić D, Reynaud D, Song D. Malware analysis with tree
automata inference. In Computer Aided Verification. 2011. p.
116–31, 20.

Backstrom L, Leskovec J. Supervised random walks: predicting
and recommending links in social networks. In Proceedings of
the fourth ACM international conference on Web search and
data mining. 2011. p. 635–44, 20, 21.

Baeza-Yates R, Ribeiro-Neto B, et al. Modern information
retrieval, vol. 463. New York: ACM press; 1999. p. 13.

Bahl PV, Chandra R, Greenberg A, Kandula S, Maltz D, Zhang M.
Towards highly reliable enterprise network services via
inference of multi-level dependencies. In Proceedings of ACM
SIGCOMM, August 2007. 19.

Bilge L, Kirda E, Kruegel C, Balduzzi M. EXPOSURE: finding
malicious domains using passive DNS analysis. In
Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS). February 2011. 20.

Borders K, Prakash A. Web Tap: detecting covert web traffic. In
Proceedings of the 11th ACM Conference on Computer and
Communication Security. 2004. p. 110–20, 20.

Chen X, Zhang M, Mao ZM, Bahl P. Automating network
application dependency discovery: experiences, limitations,
and new solutions. In Proceedings of OSDI. 2008. p. 117–30,
USENIX Association. 19.

Cortes C, Vapnik V. Support-vector networks. Mach Learn
1995;20(3):273–97. 10.

Cova M, Kruegel C, Vigna G. Detection and analysis of drive-by-
download attacks and malicious JavaScript code. In
Proceedings of 19th International World Wide Web
Conference, 2010. 2.

Cui W, Katz YH, Tan WT. BINDER: an extrusion-based
break-in detector for personal computers. In
Proceedings: USENIX Annual Technical Conference. 2005. p. 4,
2, 20.

DNScat. A tool to tunnel traffic through DNS servers.
http://tadek.pietraszek.org/projects/DNScat/. 2004. 18.

Elkan C. The foundations of cost-sensitive learning. In
International Joint Conference on Artificial Intelligence,
volume 17. 2001. p. 973–8, 10.

Erman J, Mahanti A, Aritt MF, Cohen I, Williamson CL. Semi-
supervised network traffic classification. In Proceedings of the
2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS 2007, San Diego, California, USA, June 12–16,
2007. 2007. p. 369–70, 20.

Getoor L, Diehl CP. Link mining: a survey. SIGKDD Explor Newsl
2005;7(2):3–12. 20.

196 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0010
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0010
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0010
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0015
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0015
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0015
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0015
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0020
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0020
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0025
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0025
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0025
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0025
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0030
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0030
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0030
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0030
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0035
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0035
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0035
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0040
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0040
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0040
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0040
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0045
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0045
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0050
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0050
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0050
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0050
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0055
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0055
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0055
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0055
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0060
http://tadek.pietraszek.org/projects/DNScat/
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0065
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0065
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0065
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0070
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0075
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0075

Green TM, Ribarsky W, Fisher B. Visual analytics for complex
concepts using a human cognition model. In Visual Analytics
Science and Technology, 2008. VAST’08. IEEE Symposium on.
2008. p. 91–8, 2.

Gu G, Perdisci R, Zhang J, Lee W. BotMiner: clustering analysis of
network traffic for protocol- and structure-independent
botnet detection. In Proceedings of the 17th USENIX Security
Symposium. 2008. 2.

Gummadi R, Balakrishnan H, Maniatis P, Ratnasamy S. Not-a-bot:
improving service availability in the face of botnet attacks. In
Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NDSI). 2009. 20.

John G, Langley P. Estimating continuous distributions in
Bayesian classifiers. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence. 1995. p.
338–45, 10.

Kahanda I, Neville J. Using transactional information to predict
link strength in online social networks. In Proceedings of the
Third International Conference on Weblogs and Social Media
(ICWSM). 2009. 20, 21.

Kandula S, Chandra R, Katabi D. What’s going on? Learning
communication rules in edge networks. In Proceedings of
ACM SIGCOMM. August 2008. 19.

Keller A, Blumenthal U, Kar G. Classification and computation of
dependencies for distributed management. In Proceedings of
International Symposium on Computers and
Communications. 2000. p. 78–83, 19.

King ST, Mao ZM, Lucchetti DG, Chen PM. Enriching intrusion
alerts through multi-host causality. In Proceedings of
Network and Distributed System Security (NDSS). 2005.
2, 19.

Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X.
Effective and efficient malware detection at the end host. In
USENIX Security Symposium. 2009. p. 351–66, 20.

Lee W, Stolfo SJ, Mok KW. A data mining framework for
building intrusion detection models. In Proceedings of
IEEE Symposium on Security and Privacy. 1999. p. 120–32,
20.

Li Z, Zhang M, Zhu Z, Chen Y, Greenberg AG, Wang Y-M.
WebProphet: automating performance prediction for web
services. In NSDI, volume 10. 2010. 20.

Liben-Nowell D, Kleinberg J. The link-prediction problem for
social networks. J Am Soc Inf Sci Tec 2007;58(7):1019–31. 20,
21.

MIT Lincoln Laboratory. Darpa intrusion detection evaluation.
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html.
2000. 12.

Moore AW, Zuev D. Internet traffic classification using Bayesian
analysis techniques. In Proceedings of the International
Conference on Measurements and Modeling of Computer
Systems, SIGMETRICS 2005, June 6–10, 2005, Banff, Alberta,
Canada. 2005. p. 50–60, 20.

Moshchuk A, Bragin T, Deville D. SpyProxy: execution-based
detection of malicious web content. In Proceedings of the
16th USENIX Security Symposium. 2007. 20.

Natarajan A, Ning P, Liu Y, Jajodia S, Hutchinson SE. NSDMiner:
automated discovery of network service dependencies. In
INFOCOM. 2012. p. 2507–15, 2, 5, 19.

Neasbitt C, Perdisci R, Li K, Nelms T. ClickMiner: towards forensic
reconstruction of user-browser interactions from network
traces. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. 2014. p. 1244–55,
20.

Nguyen TTT, Armitage GJ. A survey of techniques for Internet
traffic classification using machine learning. IEEE Commun
Surv Tut 2008;10(1–4):56–76. 20.

Tlogger. An Firefox extension. http://dubroy.com/tlogger/. 2009.
11, 24.

Williams N, Zander S, Armitage G. A preliminary performance
comparison of five machine learning algorithms for practical
IP traffic flow classification. SIGCOMM Comput Commun Rev
2006;36(5):5–16. 20.

Xie G, Iliofotou M, Karagiannis T, Faloutsos M, Jin Y. ReSurf:
reconstructing web-surfing activity from network traffic. In
IFIP Networking Conference, 2013, Brooklyn, New York, USA,
22–24 May, 2013. 2013. p. 1–9, 19.

Xie P, Li JH, Ou X, Liu P, Levy R. Using Bayesian networks for
cyber security analysis. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on. 2010. p.
211–20, 20.

Xu K, Butler P, Saha S, Yao D. DNS for massive-scale command
and control. IEEE Trans Dependable Sec Comput
2013;10(3):143–53. 5, 12, 18.

Zand A., Vigna G., Kemmerer R., Kruegel C. Rippler: delay
injection for service dependency detection. In INFOCOM’14.
2014. p. 2157–65. 2, 5, 19.

Zhang H, Banick W, Yao D, Ramakrishnan N. User intention-
based traffic dependence analysis for anomaly detection. In
Security and Privacy Workshops (SPW), 2012 IEEE Symposium
on. 2012. p. 104–12, 1, 3, 6, 10.

Zhang H, Yao D, Ramakrishnan N. Detection of stealthy
malware activities with traffic causality and scalable
triggering relation discovery. In Proceedings of the
9th ACM Symposium on Information, Computer, and
Communication Security (ASIACCS’14), June 2014. 2.

Zhang H, Sun M, Yao D, North C. Visualizing traffic causality for
analyzing network anomalies. In Proceedings of International
Workshop on Security and Privacy Analytics (IWSPA). 2015. p.
37–42, 1, 3.

Zomlot L, Chandran S, Caragea D, Ou X. Aiding intrusion
analysis using machine learning. In Machine Learning
and Applications (ICMLA), 2013 12th International
Conference on, volume 2. 2013. p. 40–7, 20.

TCPFLOW 1.3. https://github.com/simsong/tcpflow. 24.
Panda Security Report. http://press.pandasecurity.com/press

-room/reports/. 2015. 2.
Pony botnet. Botnet pony 1.9 malware. http://laboratoriomalware

.blogspot.com/2013/01/botnet-pony-19-malware.html. 2013.
17.

Hao Zhang received his Ph.D. degree in Computer Science from Vir-
ginia Tech in 2015. He was a member of the Human-Centric Security
Laboratory directed by Professor Danfeng Yao. He received his M.S.
degree in Computer Science from Villanova University, PA in 2010.
He holds a U.S. patent on his network anomaly detection technol-
ogy. His current research interest is on designing machine learning
methods for network and mobile security.

Danfeng (Daphne) Yao is an associate professor and L-3 Faculty
Fellow in the Department of Computer Science at Virginia Tech,
Blacksburg. She received her Computer Science Ph.D. degree from
Brown University in 2007. She received the NSF CAREER Award in
2010 for her work on human-behavior driven malware detection,
and most recently ARO Young Investigator Award for her seman-
tic reasoning for mission-oriented security work in 2014. She
received the Outstanding New Assistant Professor Award from Vir-
ginia Tech College of Engineering in 2012. Dr. Yao has several Best
Paper Awards (e.g., ICICS ‘06, CollaborateCom ‘09, and ICNP ‘12) and
Best Poster Awards (e.g., ACM CODASPY ‘15). She was given the
Award for Technological Innovation from Brown University in 2006.
She held a U.S. patent for her anomaly detection technologies. Dr.
Yao is an associate editor of IEEE Transactions on Dependable and
Secure Computing (TDSC). She serves as PC members in numer-
ous computer security conferences, including ACM CCS. She has
over 65 peer-reviewed publications in major security and privacy
conferences and journals.

197c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0080
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0080
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0080
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0080
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0085
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0085
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0085
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0085
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0090
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0090
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0090
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0090
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0095
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0095
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0095
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0095
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0100
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0100
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0100
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0100
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0105
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0105
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0105
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0110
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0110
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0110
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0110
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0115
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0115
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0115
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0115
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0120
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0120
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0120
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0125
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0125
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0125
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0125
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0130
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0130
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0130
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0135
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0135
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0135
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0140
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0145
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0145
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0145
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0145
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0145
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0150
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0150
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0150
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0155
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0155
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0155
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0160
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0160
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0160
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0160
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0160
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0165
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0165
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0165
http://dubroy.com/tlogger/
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0175
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0175
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0175
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0175
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0180
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0180
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0180
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0180
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0185
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0185
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0185
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0185
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0190
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0190
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0190
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0195
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0195
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0195
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0195
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0200
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0200
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0200
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0200
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0200
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0205
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0205
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0205
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0205
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0210
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0210
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0210
http://refhub.elsevier.com/S0167-4048(16)00004-3/sr0210
https://github.com/simsong/tcpflow
http://press.pandasecurity.com/press-room/reports/
http://press.pandasecurity.com/press-room/reports/
http://laboratoriomalware.blogspot.com/2013/01/botnet-pony-19-malware.html
http://laboratoriomalware.blogspot.com/2013/01/botnet-pony-19-malware.html

Naren Ramakrishnan is the Thomas L. Phillips Professor of Engi-
neering at Virginia Tech. He directs the Discovery Analytics Center,
a university-wide effort that brings together researchers from
computer science, statistics, mathematics, and electrical and com-
puter engineering to tackle knowledge discovery problems in
important areas of national interest, including intelligence analy-
sis, sustainability, and electronic medical records. He received his
PhD in computer sciences from Purdue University.

Zhibin Zhang is an associate professor at Institute of Computing
Technology, Chinese Academy of Sciences. He received his Ph.D.
degree in Computer Science from Institute of Computing Technol-
ogy, Chinese Academy of Sciences in 2007. His research interests
lie in the area of network measurement and security, traffic clas-
sification, distributed system and machine learning.

198 c om pu t e r s & s e cu r i t y 5 8 (2 0 1 6) 1 8 0 – 1 9 8

	 Causality reasoning about network events for detecting stealthy malware activities
	 Introduction
	 Organization

	 Model and overview
	 TRG definitions and properties
	 Security applications of TRG

	 Rule-based discovery
	 Overview of rule-based discovery
	 Details of classification rules

	 Learning-based discovery
	 Overview of learning approach
	 Pairing operation for feature extraction
	 Efficient pairing algorithm
	 Efficiency pairing using parallel computing
	 Divide-and-conquer
	 MapReduce

	 Feature selection and cost matrix

	 Root-trigger security policy
	 Evaluations and results
	 Experimental overview
	 Datasets
	 Effectiveness of EPA

	 Pairwise feature extraction on network data
	 Classification setup of learning-based method
	 Accuracy and security metrics

	 Evaluation of our learning-based approach
	 Evaluation on dataset I
	 Accuracy of pairwise triggering relations
	 Correctness of root triggers

	 Detection of malicious traffic in dataset I
	 Evaluation on dataset II
	 Pairwise classification accuracy
	 Correctness of root triggers

	 Evaluation on dataset III
	 Pairwise classification accuracy
	 Correctness of root triggers

	 Evaluation on dataset IV

	 Evaluation of stealthy malware activities
	 Malicious browser extension
	 Data exfiltrating malware
	 Detection of real-world malware
	 Comparison to conventional firewall

	 DNS bot detection

	 Comparison between rule-based and learning-based approaches
	 Performance of rule- and learning-based approaches
	 Performance breakdown of learning-based approaches

	 Summary

	 Related work
	 Conclusions
	 References

