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Abstract—During repackaging, malware writers statically in-
ject malcode and modify the control flow to ensure its execution.
Repackaged malware is difficult to detect by existing classification
techniques, partly because of their behavioral similarities to be-
nign apps. By exploring the app’s internal different behaviors, we
propose a new Android repackaged malware detection technique
based on code heterogeneity analysis. Our solution strategically
partitions the code structure of an app into multiple dependence-
based regions (subsets of the code). Each region is independently
classified on its behavioral features. We point out the security
challenges and design choices for partitioning code structures
at the class and method level graphs, and present a solution
based on multiple dependence relations. We have performed
experimental evaluation with over 7,542 Android apps. For
repackaged malware, our partition-based detection reduces false
negatives (i.e., missed detection) by 30-fold, when compared to the
non-partition-based approach. Overall, our approach achieves a
false negative rate of 0.35% and a false positive rate of 2.97%.

I. INTRODUCTION

The ease of repackaging Android apps makes the apps
vulnerable to software piracy in the open mobile market.
Developers can insert or modify parts of the original app and
release it to a third party market as new. The modification
may be malicious. Researchers found 80.6% of malware are
repackaged malware, which demonstrates the popularity and
severity of repackaged malware [34].

There are two categories of techniques for detecting repack-
aged malware, i) similarity-based detection specific to repack-
aged malware and ii) general purpose detection. Specific solu-
tions for repackaged Android apps aim at finding highly simi-
lar apps according to various similarity measures. For example,
in ViewDroid [30], the similarity comparison is related to how
apps encode the user’s navigation behaviors. DNADroid [8]
compares the program dependence graphs of apps to examine
the code reuse. Juxtapp [16] and DroidMOSS [33] examine
code similarity through features of opcode sequences.

Although intuitive, similarity-based detection for repack-
aged malware may have several technical limitations. The
detection typically relies on the availability of original apps
for comparison, thus is infeasible without them. The pair-
wise based similarity computation is of quadratic complexity
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O(N2) in the number N of apps analyzed. Thus, the analysis
is extremely time-consuming for large-scale screening.

General-purpose Android malware detection techniques
(e.g., permission analysis [20], dependence analysis [26], API
mining [1]) have a limited capability in detecting repackaged
malware. The reason is that these analyses are performed on
the entire app, including both the injected malicious code
and the benign code inherited from the original app. The
presence of benign code in repackaged malware substantially
dilutes malicious features. It skews the classification results,
resulting in false negatives (i.e., missed detections). In a
recent study [12], researchers found that most missed detection
cases are caused by repackaged malware. Thus, precisely
recognizing malicious and benign portions of code in one app
is important in improving detection accuracy.

We aim to significantly improve repackaged malware detec-
tion through designing and evaluating a new partition-based
classification technique, which explores code heterogeneity
in an app. Repackaged malware is usually generated by
injecting malicious components into an original benign app,
while introducing no control or data dependence between the
malicious component and the original app.

We examine Android programs for code regions that seem
unrelated in terms of data/control dependences. Regions are
formed through data/control dependence analysis and their
behavior is examined with respect to security properties (e.g.,
calling sensitive APIs). We refer to code in different regions
as heterogeneous code if regions of the program exhibit
distinguishable security behaviors.

Recognizing code heterogeneity in programs has security
applications, specifically in malware detection. Repackaged
Android malware is an example of heterogeneous code, where
the original app and injected component of code have quite
different characteristics (e.g., the frequency of invoking critical
library functions for accessing system resources). We are able
to locate malicious code by distinguishing different behaviors
of the malicious component and the original app.

Our main technical challenge is how to identify integrated
coherent code segments in an app and extract informative
behavioral features. We design a partition-based detection to
discover regions in an app, and a machine-learning-based
classification to recognize different internal behaviors in re-



gions. Our detection leverages security heterogeneity in the
code segments of repackaged malware. Our algorithm aims to
capture the semantic and logical dependence in portions of a
program. Specifically, we refer to a DRegion (Dependence
Region) as a partition of code that has disjoint control/data
flows. DRegion is formally defined in Def. 3. Our goal is to
identify DRegions inside an app and then classify these regions
independently. Malware that is semantically connected with
benign and malicious behaviors is out of scope of our model
and we explain how it impacts the detection.

While the approach of classifying partitioned code for
malware detection appears intuitive, surprisingly there has not
been systematic investigated in the literature. The work on
detecting app plagiarism [32] may appear similar to ours. It de-
composes apps into parts and performs similarity comparisons
between parts across different apps. However, their partition
method is based on rules extracted from empirical results, and
cannot be generalized to solve our problem. A more rigorous
solution is needed to precisely reflect the interactions and
semantic relations of various code regions.

Our contributions can be summarized as follows:

• We provide a new code-heterogeneity-analysis frame-
work to classify Android repackaged malware with ma-
chine learning approaches. Our prototype DR-Droid,
realizes static-analysis-based program partitioning and
region classification.1 It automatically labels the benign
and malicious components for a repackaged malware.

• We utilize two stages of graphs to represent an app:
a coarse-grained class-level dependence graph (CDG)
and a fine-grained method-level call graph (MCG). The
reason for these two stages of abstraction is to satisfy
different granularity requirements in our analysis. Specif-
ically, CDG is for partitioning an app into high-level
DRegions; MCG is for extracting detailed call-related
behavioral features. CDG provides the complete coverage
for dependence relations among classes. In comparison,
MCG provides a rich context to extract features for
subsequent classification.

• Our feature extraction from individual DRegions (as
opposed to the entire app) is more effective under existing
repackaging practices. Our features cover a wide range
of static app behaviors, including user-interaction related
benign properties.

• Our experimental results show a 30-fold improvement
in repackaged malware classification. The average false
negative rate for our partition- and machine-learning-
based approach is 30 times lower than the conventional
machine-learning-based approach (non-partitioned equiv-
alent). Overall, we achieve a low false negative rate
of 0.35% when evaluating malicious apps, and a false
positive rate of 2.96% when evaluating benign apps.

1DR-Droid is short for partition-based classification on heterogeneous
Dependence-related Regions of AnDroid apps.

II. OVERVIEW AND DEFINITIONS

In this section, we present our attack model, technical
challenges associated with partitioning, and the definitions
needed to understand our algorithms.

Repackaged malware seriously threatens both data privacy
and system integrity in Android. There are at least two types
of malware abuse through repackaged malware, data leak and
system abuse. The danger of repackaged malware is that the
malicious code is deeply disguised and is difficult to detect.
Repakcaged malware appears benign and provides useful
functionality; however, they may conduct stealthy malicious
activities such as botnet command-and-control, data exfiltra-
tion, or DDoS attacks. Our work described in this paper can
be used to screen Android apps to ensure the trustworthiness
of apps installed on mission-critical mobile devices, and to
discover new malware before they appear on app markets.

Assumption. Our security goal is to detect repackaged
malware that is generated by trojanizing legitimate apps with
a malicious payload, where the malicious payload is logically
and semantically independent of the original benign portion.
This assumption is reasonable because all the repackaged
malware in the existing dataset contains disjoint code.

How to analyze the more challenging case of connected
graphs in repackaged malware is out of the scope of our de-
tection. Mitigations are discussed in Section VI. Our approach
is focused on automatically identifying independent partitions
(DRegions) of an app, namely partitions that have disjoint
control/data flows. We perform binary classification on each
element of the DRegion.

A. Challenges and Requirements

We analyze dependence-based connectivity as the specific
heterogeneous property in code. Heterogeneous code can
then be approximated by finding disjoint code structures in
Android event relation/dependence graphs. We aim to detect
repackaged malware by identifying different behaviors in its
heterogeneous code. Therefore, how to achieve an efficient
partition and to acquire representative behaviors of each par-
tition are key research questions.

Partition Challenges: One may analyze dependence rela-
tions for the purpose of code partition. A straightforward
approach is to partition an app into clusters of methods based
on function call relations [17]. However, this straightforward
approach cannot solve the following challenges:

• Inaccurate representation of events. Method-level repre-
sentation is less informative than class-level representa-
tion for profiling relations of events. An Android app is
composed of different types of events (e.g., activities,
services and broadcasts). An Android event is imple-
mented by extending an Java class. Class information for
events is scattered or lost in conventional method-level
graphs. Furthermore, method-level call analysis cannot
resolve the implicit calls within a life-cycle of event
methods (e.g., OnCreate, OnStart, and onPause). There
are no direct invoking relations among event methods.
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Fig. 1: Workflow of our partition-based Android malware detection.

(These methods are managed by an activity stack by the
Android system.) Thus, method-level call partition would
generate an excessive number of subcomponents, which
unnecessarily complicates the subsequent classification.

• Incompleteness of dependence relations. Call relations
alone cannot accurately represent all possible dependence
relations. Dependences may occur through data transfor-
mation. Android also has asynchronous callbacks, where
the call relations are implicit. Thus, focusing on call
dependence relations alone is insufficient.

Our approach for partitioning an app is by generating the
class-level dependence graph (CDG) by exploring categories
of dependence relations. To partition an app into semantic-
independent regions, a class-level representation is more suit-
able to measure the app semantic dependence relations.

Classification Challenges: Extracting meaningful features
to profile each region is important for classification. In our
partitioned setting, obstacles during feature extraction may
include the following:

• Inaccurately profiling behaviors. Class-level dependences
are coarse-grained. They may not provide sufficient de-
tails about region behaviors needed for feature extraction
and classification. For example, the interactions among
components within the Android framework may not be
included.

• Insufficient representative features. Features in most of
the existing learning based solutions are aimed at char-
acterizing malicious behaviors (e.g., overuse of sensitive
APIs). This approach fails to learn benign properties
in apps. This bias in recognition may result in missed
detection and evasion.

Our approach for achieving highly accurate classification
is by extracting semantic features from the method-level
call graph (MCG). With the help of the MCG, we extract
features (e.g., sensitive APIs and permission usage in existing
approaches [1], [2]) to monitor malicious behaviors. Further-
more, we discover new user interaction features with the
combination of graph properties to screen benign behaviors.

B. Definitions
We describe major types of class-level dependence relations

later in Def. 1. These class-level dependence relations empha-

size the interactions between classes.
Definition 1: We define three types of class-level depen-

dence relations in an Android app.
• Class-level call dependence. If method m0 in class C 0

is called by method m in class C, then there exists a
class-level call dependence relation between C and C 0,
which is denoted by C ! C 0.

• Class-level data dependence. If variable v0 defined in
class C 0 is used by another class C, then there exists a
data dependence relation between C and C 0, which is
denoted by C ! C 0.

• Class-level ICC dependence. If class C 0 is invoked
by class C through explicit-intent-based inter-component
communication (ICC), then there exists an ICC depen-
dence relation between C and C 0, which is denoted by
C ! C 0.

The ICC dependence is specific to Android programs, where
the communication channel is constructed by using intents [7].
For the ICC dependence definition, our current prototype does
not include implicit intent, which is not common for intra-
app component communication. The dependence relations via
implicit-intent based ICCs cannot be determined precisely
enough in static program analysis.

Definition 2: Class-level dependence graph (CDG) of an
app G = {V,E} is a directed graph, where V is the vertex set
and E is the edge set. Each vertex n 2 V represents a class.
The edge e = (n1, n2) 2 E, which is directed from n1 to
n2, i.e., n1 ! n2. Edge e represents one or more dependence
relations between n1 and n2 as defined in Definition 1.

The purpose of having our customized class-level depen-
dence graphs is to achieve complete dependence coverage and
event-based partition. The graph needs to capture interactions
among classes. We define method-level call dependence and
how to build the method-level call graph (MCG) based on this
definition. We formally define DRegions through class-level
dependence connectivity.

Definition 3: Given a class-level dependence graph G(V,E)
of an Android application, DRegions of the application are
disjoint subsets of classes as a result of a partition that satisfies
following two properties.

1) Dependence relations among the classes within the same
DRegion form a directed connected graph. Formally,
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Definition 4: Method-level call dependence. If method
m calls method m0, then there exists a method-level call
dependence relation between m and m0, denoted by m ! m0.
Method m and m0 may belong to the same or different classes
and one of them may be an Android or Java API.

The purpose of constructing method-level call graphs is
to extract detailed behavioral features for classifying each
DRegion. The method-level call graph contains the app’s
internal call relations, and the interactions with the Android
framework and users.

C. Workflow

Fig. 1 shows the framework of our approach. Our approach
can be divided into the following major steps:

1) IR Generation. Given an app, we decompile it into the
intermediate representations (IR), which may be Java
bytecode, smali code, or customized representation. The
IR in our prototype is smali code.2

2) CDG and MCG generation. Given the IR, we generate
both class-level and method-level dependence relations
through the analysis on the smali opcodes of instruc-
tions. We use the obtained dependence relations to
construct the class-level dependence graphs (CDG) and
method-level call graphs (MCG).

3) App partition and mapping. Based on the CDG, we
perform reachability analysis to partition an app into
disjoint DRegions. We map each method in MCG to its
corresponding class in CDG by maintaining a dictionary
data structure.

4) Generating feature vectors. We extract three categories
of features from each DRegion in MCG. We construct a
feature vector of each DRegion to describe its behaviors.

5) Training and classification. We train classifiers on the
labeled data to learn both benign and malicious behav-
iors of DRegions. We apply classifiers to screen new app
instances by individually classifying their DRegions and
integrating the results.

In order to determine the original app, from which a
flagged malware is repacked, similarity comparisons need to
be performed. Our comparison complexity O(mN) would be
much lower than the complexity (N2) of a straightforward
approach, where m is our number of flagged malware and N
is the number of total apps analyzed. m ⌧ N , as the number
of malware is far less than the total number of apps on markets.

2https://ibotpeaches.github.io/Apktool/

III. GRAPH GENERATION AND PARTITION

In this section, we provide details of our customized class-
level dependence analyzes and our partition algorithm.

A. Class-level Dependence Analysis
Our class-level dependence analysis is focused on Android

event relations. It obtains class-level dependence relations
based on fine-grained method- or variable-level flows. We
highlight the operations for achieving this transformation.

Data dependence. In the variable-level flow F , we trace the
usage of a variable v0 which is defined in class C 0. In case
v0 is used by another class C, e.g., reading the value from v0

and writing it into a variable v defined in class C, we add a
direct data dependence edge from C to C 0 in CDG.

ICC dependence. ICC dependence is the Android specific
data dependence, where data is transformed by intents through
ICC. An ICC channel occurs when class C initializes an
explicit intent. Method m (generally OnCreate function) in
class C 0 is invoked from class C. By finding an ICC channel
between class C and C 0 through pattern recognition, we add
a direct ICC dependence edge from C to C 0 in CDG.

Call dependence. We briefly describe the operations for
obtaining class-level call dependence when given the method-
level call graph. We first remove the callee functions that
belong to Android framework libraries. For the edge e =
{m,m0} that indicates method m0 is called by method m,
in case m belongs to a class C and m0 belongs to class C 0,
we add a direct call dependence edge from C to C 0 in CDG.

We give our implementation details to statically infer these
relations in Section V-A. All four dependence relations can be
identified by analyzing instructions in IR. The complexity of
connecting the class-level call graph is O(N ), where N is the
total number of the instructions in the IR decompiled from an
app. We do not distinguish the direction of the edges when
partitioning the CDG.

B. App Partition and Mapping Operations
The goal of app partition operation is to identify logically

disconnected components. The operation is based on the class-
level dependence graph (CDG). We use reachability analysis
to find connected DRegions. Two nodes are regarded as
neighbors if there is an edge from one node to the other.
Our algorithm starts from any arbitrary node in the CDG,
and performs breadth first search to add the neighbors into
a collection. Our algorithm stops when every node has been
grouped into a particular collection of nodes. Each (isolated)
collection is a DRegion of an app. Classes with any depen-
dence relations are partitioned into the same DRegion. Classes
without dependence relations are in different DRegions.

Our mapping operation projects a method m in MCG
to its corresponding class C in CDG. Mapping is uniquely
designed for our feature extraction. Specifically, its purpose is
to map extracted features to the corresponding DRegion. The
mapping operation is denoted by F

mapping

: S
c

! Pm

Sc
=

{G0
c1, G

0
c2, ...}, where input S

c

is a DRegion in CDG, and
output Pm

Sc
is a set of call graphs in MCG. The mapping



algorithm projects a method in MCG to a DRegion in CDG
by using a lookup table. We refer to Pm
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an example of the mapping function.

IV. FEATURE VECTOR GENERATION

We analyze APIs and user interaction functions to approx-
imate their behaviors. Our features differ from most existing
features by considering DRegion behavior properties. We
describe three types of features in this section.

A. Feature Extraction

Traditionally permission features analyze the registered per-
missions in Androidmanifest.xml as a complete unit [20].
Because our approach is focused on DRegions and different
DRegions may use different permissions for various function-
alities, we calculate the permission usage in each DRegion.

Type I: User Interaction Features. Malicious apps may
invoke critical APIs without many user interactions [31].
User interaction features represent the interaction frequency
between the app and users. Android provides UI components
and each of them has its corresponding function for triggering.
A Button object is concatenated with onClick function, and
a Menu object can be concatenated with onMenu-ItemClick
function. We record the frequencies of 35 distinct user in-
teraction functions and additional 2 features summarizing
statistics of these functions. The statistics features represent
the total number of user interaction functions and the number
of different types of user interaction functions in a DRegion,
respectively. We define a feature called coverage rate (CR),
which is the percentage of methods directly dependent on user-
interactions functions. We compute the coverage rate (CR) for
a projection Pm

Sc
of a DRegion S

c

as:

CR(Pm

Sc
) =

S
U2Vi

U.successors()

|V (Pm

Sc
)| (1)

The CR rate statically approximates how closely the user
interacts with functions in a DRegion. In Equation (1), Pm

Sc
is

the projection for a DRegion S
c

in CDG. V
i

is the set of user
interaction methods in Pm

Sc
, where V

i

✓ Pm

Sc
. U.successors()

is the successors vertices of method U in MCG. Any method
in U.successors() is directly invoked by U . |V (Pm

Sc
)| is the

total number of methods in Pm

Sc
. Fig. 3 shows an example to

calculate the coverage rate.
Type II: Sensitive API Features. We divide sensitive APIs

into two groups: Android-specific APIs and Java-specific APIs.
The APIs are selected based on their sensitive operations [12].
For Android specific APIs, we focus on APIs that access
user’s privacy information, e.g., reading geographic location
getCellLocation, getting phone information getDeviceId. For
Java-specific APIs, we focus on file and network I/Os, e.g.,
writing into files write, and sending network data sendUrgent
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Fig. 2: An illustration of mapping operation that projects a
DRegion in CDG to a set of graphs in MCG. S
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of three method-level call graphs {G0
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c2, G
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Fig. 3: An example illustrating the computation of coverage
rate, U1 and U2 are two user interaction functions, f1 to f5 are
five method invocations. f1, f2, f3 are successors of U1 and
f4 is the successor of U2. The coverage rate for this DRegion
is 4

7 = 57%.

Data. We extract 57 most critical APIs and 2 features on their
statistic information (e.g., total count and occurrence of APIs).

Type III: Permission Request Features. We analyze
whether a DRegion uses a certain permission by scanning
its corresponding systems calls or permission-related strings
(e.g., Intent related permissions) [4]. We specify a total of
137 distinguished permissions and 2 features on permission
statistics (e.g., total count and occurrence of permissions).
The Android framework summarizes all the permissions into 4
groups: normal, dangerous, signature and signatureOrSystem.
We record the permission usage in each group and the statistics
about these groups.

Coverage rate (CR) is a new metric. It is obtained by our
empirical observation, that malware invokes a large number
of sensitive APIs without user’s involvement. These complex
features cover the behaviors of DRegions from various per-
spectives. We expect these features to be more obfuscation
resilient than signature features extracted from bytecode or
structures of the control-flow graph.

B. Feature Vector Analysis

We generate a feature vector for each DRegion of an app.
For classification, each DRegion is independently classified
into benign or malicious.

We perform the standard 10-fold cross-validation to calcu-
late FNR (false negative rate), FPR (false positive rate), TPR
(true positive rate) and ACC (accuracy rate) for each fold.
These rates are defined as:

FNR =
FN

P

, FPR =
FP

N

, TPR =
TP

P

, ACC =
TP + TN

P + N



where FN represents the number of false negative (i.e.,
missed detection), FP represents the number of false positive
(i.e., false alerts), TP represents the number of true positive
(i.e., accuracy of detection), TN represents the number of
true negative (i.e., accuracy of identifying benign apps), P
represents the number of malicious apps and N represents the
number of benign apps.

Classification of Apps. Our classifiers can be used to
classify both single-DRegion and multi-DRegion apps. For
a multi-DRegion app after classification, we obtain a binary
vector showing each DRegion marked as benign or malicious.
We define the malware score r

m

as follows:

r
m

=
N

mali

N
total

(2)

In Equation (2), N
mali

is the number of DRegions labeled
as malicious by classifiers, N

total

is the total number of
DRegions and r

m

2 [0, 1]. If an app contains both malicious
and benign DRegions, we regard this app as a suspicious
repackaged app.

V. PRELIMINARY EVALUATION

The objective of our preliminary evaluation is to answer
the following questions: Q1) Can our approach accurately
detect non-repackaged malware that has a single DRegion?
Q2) How much improvement is our approach in classifying
repackaged malware that has multiple DRegions? Q3) Can
our approach distinguish the benign and malicious code in
repackaged malware? Q4) What is the false positive rate
(FPR) and false negative rate (FNR) of our approach in
classifying apps that have multiple DRegions? Q5) Can our
approach discover new malware?

We implement our prototype with smali code analysis
framework Androguard, graph analysis library networkX, and
machine learning framework scikit-learn.3 Most existing ma-
chine learning based approaches (e.g, [1], [14]) are built on
the intermediate representation with smali code. Smali code
analysis achieves large scale app screening with low perfor-
mance overhead, because smali code analysis is performed
on the assembly code representation. Our current prototype is
built on the smali code for the scalability of large-scale app
analysis. Our prototype is implemented in Python with total
4,948 lines of code.4 We evaluated our approach on malware
dataset Malware Genome [34] and VirusShare database.5 We
also screened 1,617 benign apps to compute false positive rate
and 1,979 newly released apps to discover new malware.

A. Implementation Details

Building upon the method-level call graph construction [14],
we construct more comprehensive analysis to approximate
the class-level dependence graph and graph partitioning. We
highlight how DR-Droid approximates various class-level

3http://code.google.com/p/androguard.
4https://github.com/ririhedou/dr droid.github.io
5http://virusshare.com/

dependence relations with intra-procedure analysis (e.g., dis-
covering dependence relations) and inter-procedure analysis
(e.g., connecting the edges). Our experiment results indicate
that our dependence relations provide sufficient information
for identifying and distinguishing different behaviors in an
app.
Inferring class-level call dependence. In Dalvik, opcodes be-
ginning with invoke represent a call from this calling method
to a targeted callee method. E.g., invoke-virtual represents
invoking a virtual method with parameters.
invoke-static represents invoking a static method with param-
eters and invoke-super means invoking the virtual method of
the immediate parent class. We identify each instruction with
invoke opcodes and locate the class which contains the callee
method. The class-level call dependence is found, when the
callee method belongs to another class inside the app. Because
of our focus on the interactions among classes, Android API
calls are not included.
Inferring class-level data dependence. Opcodes such as iget,
sget, iput, and sput are related with data transformation. For
example, the instruction “iget-object v0, v0, Lcom/geinimi/
AdActivity;-id: Landroid/widget/Button;” represents reading
a field instance into v0 and the instance is a Button object
named d, which is defined in another class hLcom/geinimi/
AdActivity;i. Furthermore, there is a subset of opcodes for
each major opcode, e.g., iget-boolean specifies to read a
boolean instance and iget-char specifies to read a char instance.
By matching these patterns, we obtain the data dependence
among these classes.
Inferring class-level ICC dependence. To detect an ICC
through an explicit intent, we identify a targeted class ob-
ject that is initialized by using const-class, then we trace
whether it is put into an intent as a parameter by calling
Intent.setclass(). If an ICC is trigged to activate a service
(by calling startService) or activate an activity (by calling
startActivity), we obtain the ICC dependence between current
class and the target class.
Method-level call graph construction. Our method-level call
graph is constructed while we analyze call relations in the
construction of the CDG by scanning invoke opcode, which is
similar to the standard call graph construction [14]. We store
more detailed information including the class name, as well
as the method name for each vertex in MCG. For example,
hLandroid/telephony/SmsManager;i is the class name for deal-
ing with messages and sendTextMessage(...) is a system call
with parameters to conduct the behavior of sending a message
out. After the construction of MCG, we use a lookup table
structure to store the projection for each DRegion in CDG
and to maintain the mapping relation.

B. Non-repackaged Malware Classification
Our first evaluation is on a set of non-repackaged malicious

applications and a set of benign applications. Each of them
contains just a single DRegion. The DRegion is labeled as
benign if the app belongs to the benign app dataset, and the
DRegion is labeled as malicious if the app belongs to the



Cases FNR(%) FPR(%) ACC(%)
KNN 6.43 ± 5.22 6.50 ± 2.67 93.54 ± 3.33

D.Tree 4.78 ± 2.90 3.52 ± 1.57 95.79 ± 2.14
R.Forest 3.85 ± 3.27 1.33 ± 0.78 97.30 ± 1.96

SVM 7.42 ± 4.85 1.46 ± 0.58 95.28 ± 2.58

TABLE I: 10-fold cross-validation for evaluating the classi-
fiers’ performance in classifying single-DRegion apps.

Fig. 4: Top ten important features with their ranking values,
which are computed by Random Forest classifier.

malicious app dataset. There are two purposes for the first
evaluation: 1) comparing the detection accuracy of different
machine learning techniques, 2) obtaining a trained classifier
for testing complicated repackaged apps. The classification
result is binary (0 for benign and 1 for malicious) for single
DRegion apps. We evaluated four different machine learn-
ing techniques: Support Vector Machine (SVM), K-nearest
neighbor (KNN), Decision Tree (D.Tree) and Random Forest
(R.Forest) in non-repackaged (general) malware classification.
Our training set is broadly selected from 3,325 app samples,
among which 1,819 benign apps from Google Play, and 1,506
malicious apps from both Malware Genome and VirusShare.
Our feature selection step reduces the size of features from 242
to 80. We choose the radial basis function as SVM kernel, 5 as
the number of neighbors in KNN, and 10 trees in the Random
Forest.

We used a standard measurement 10-fold cross-validation to
evaluate efficiency of classifiers. In 10-fold cross-validation,
we randomly split the dataset into 10 folds. Each time, we
use 9 folds of them as the training data and the 1 left fold as
the testing data. We evaluate the performance of classifiers
by calculating the average FPR, FNR and ACC. Our 10-
fold cross-validation results are shown in Table I, where each
value is represented as the average ± the standard deviation.
Fig. 4 shows the top ten features with their types and ranking
importance values, where coverage rate (CR) ranks the ninth.
We found four of top ten important features belong to user
interaction features (Type I). The user interaction features are
important in our classification.

We conclude that: 1) to answer Q1, DR-Droid detects non-
repackaged malware with single DRegions with high accu-
racies. 2) The Random Forest classifier achieves the highest
AUC value 0.9930 in ROC and accurate rate (ACC) 97.3%
in two different measurements. 3) Our new user interaction

features have a significant influence on the classifiers.

C. Repackaged Malware Classification

We tested our approach on more complicated repackaged
malware which contains multiple DRegions. We calculate
malware score r

m

for each repackaged malware. Unlike binary
classification in existing machine-learning-based approaches,
r
m

is a continuous value in [0, 1] to measure DRegions with
different security properties.

There are no existing solutions on the classification of
multiple DRegions in an app. For comparison, we care-
fully implemented a control method called the non-partition-
based classification. To have a fair and scientific compar-
ison with the non-partition-based which does not consider
code heterogeneity, DR-Droid’s classification and the control
method’s classification use the same Random Forest classifier
and the same set of features from Section 5.2. The only
difference between our method and the control method is
that the control method treats an app in its entirety. The
control method represents the conventional machine-learning-
based approach. We assessed several repackaged malware
families: Geinimi, Kungfu (which contains Kungfu1, Kungfu2,
Kungfu3, Kungfu4) and AnserverBot multi-DRegion apps in
these families. The major reason for choosing these families
is that they contain enough representative repackaged malware
for testing. Other malware datasets (e.g., VirusShare) do not
specify the types of malicious apps. It is hard to get the ground
truth of whether an app in the datasets is repackaged or not.
The classification accuracy results are shown in Table II.

Our partition-based approach gives the substantial improve-
ment by achieving a lower FNR in all three families. Specif-
ically, the non-partition-based approach misses 12 apps in
Geinimi and 3 apps in AnserverBot family. In comparison,
our approach accurately detects all the malicious DRegions
in Geinimi and AnserverBot families. The non-partition-based
approach misses 12 apps in Kungfu family. In comparison, our
approach misses 4 apps in Kungfu family. The average FNR
for our approach is 0.35%.

To answer Q2, our solution gives 30-fold improvement over
the non-partition-based approach on average false negative
rate in our experiment. This improvement is substantial. The
control method without any code heterogeneity analysis is
much less capable of detecting repackaged malware.

1) Case Study of Heterogeneous Properties: For an app
(DroidKungFu1--881e*.apk) in Kungfu family, the malicious
DRegion contains 13 classes whose names begin with Lcom/
google/ssearch/*. The app attempts to steal the user’s personal
information by imitating a Google official library. The other
DRegion whose name begins with Lcom/Allen/mp/* is iden-
tified as benign by our approach. There are some isolated
classes such as R$attr, R$layout, which are produced by
R.java with constant values. The malicious DRegion has its
own life cycle which is triggered by a receiver in the class
Lcom/google/ssearch/Receiver. All the processes run on the
background and separately from the benign code.



Malware Families Geinimi Kungfu AnserverBot Average
FN FNR(%) FN FNR(%) FN FNR(%) FNR(%)

Partition-based 0(62) 0 4(374) 1.07 0(185) 0 0.35
Non-partition-based 12(62) 19.36 12(374) 9.89 3(185) 1.62 10.29

TABLE II: False negative rate for detecting three families of repackaged malware. Our partition-based approach reduces the
average false negative rate by 30-fold.

DroidKungfu1–881e*.apk Partition (ours) Non-partition
Feature Description DRegion1 DRegion2 N/A

Type III
READ PHONE STATE
permission 0 1 1

READ LOGS
permission 0 1 1

Type II

getDeviceId function in
Landroid/telephone/
telephoneManager

0 1 1

read function in
Ljava/io/InputStream 0 3 3

write function in
Ljava/io/FileOutput 0 1 1

Type I

onClick function
occurrence 16 2 18

# of distinct
user-interaction
functions

5 1 5

onKeyDown function
occurrence 3 0 3

Classification Benign Malicious Benign
Correctness (Yes) (No)

TABLE III: Our method shows heterogeneous properties in
the repackaged app (DroidKungfu1–881e*.apk), where the no-
partition based cannot.

Table III shows the distribution of a subset of representative
features in two different methods. Particularly, DRegion 1 con-
tains many user interaction functions with no sensitive APIs
and permissions. However, DRegion 2 invokes a large number
of sensitive APIs and requires many critical permissions. In the
experiment, DRegion 1 is classified as benign and DRegion 2
is classified as malicious. The different prediction results are
due to the differences in DRegion behaviors, which originally
comes from their code heterogeneity. The non-partition-based
approach fails to detect this instance. The experiment results
validate our initial hypothesis that identifying code hetero-
geneity can substantially improve the detection of repackaged
malware. To answer Q3, our approach successfully detects
different behaviors in the original and injected components,
demonstrating the importance and effectiveness of code het-
erogeneity analysis.

2) False Negative Analysis: We discuss possible reasons
that cause false negatives in our approach. 1) Integrated benign
and malicious behaviors. Well integrated benign and malicious
behaviors in an app can cause false negatives in our approach.
Com.egloos.dewr.ddaycfgc is identified by VirusTotal as a
trojan but is predicted as benign by our approach. The reason
is that the malicious behavior is hidden under the large amount
of benign behaviors. The activities are integrated tightly and
a small number of sensitive APIs are used in the app. 2) Low
code heterogeneity in malicious components. Low code het-
erogeneity means that malicious code does not exhibit obvious
malicious behaviors or is deeply disguised. To reduce false
negatives, a more advanced partition algorithm is required to
identify integrated benign and malicious behaviors.

w/o Ads w/ Group 1 Ads w/ Group 2 Ads
% of Alerts 2.96% 2.96% 5.18%

TABLE IV: For 135 benign apps, how the percentage of alerts
changes with the inclusion of ad libraries. Group 1 Ads are
benign ad libraries, namely admob and google.ads. Group 2
Ads refer to the known aggressive ad library Adlantis. Group
1 does not affect our detection accuracy, whereas Group 2
increases the number of alerts.

D. False Positive Analysis with Popular Apps

The purpose of this evaluation is to experimentally assess
how likely our detection generates false positives (i.e, false
alerts). We collect 1,617 free popular apps from Google Play
market, the selection covers a wide range of categories. We
evaluate a subset of apps (158 out of 1,617) that have multiple
large DRegions. Each app contains 2 or more class-level
DRegions with at least 20 classes in the DRegion. In the 158
apps, Virus Total identifies 135 of them as true benign apps,
where apps raise no security warnings.

The most common reason that causes multi-DRegions is the
use of ad libraries. A majority of multiple DRegion apps have
at least one ad library (e.g., admob). The ad library acquires
sensitive permissions, access information and monitor users’
behaviors to send the related ads for profit. Some aggressive ad
libraries, e.g., Adlantis, results in a false alarm in our detection.
Adlantis acquires multiple sensitive permissions, and it tries
to read user private information. The ad package involves
no user interactions. We identify ad libraries by matching
the package name in a whitelist. More effort is needed to
automatically identify and separate ad libraries. Table IV
presents the false positive rate with and without ads libraries.
The normal ad libraries do not affect our detection accuracy,
while the aggressive ads libraries dilute our classification
results and introduce false alerts into our detection. When
excluding aggressive ad libraries, our detection misclassifies
4 out of 135 benign apps. To answer Q4, our approach raises
a false positive rate (FPR) of 2.96% when classifying free
popular apps and a false negative rate (FNR) of 0.35% when
classifying repackaged malware.

E. Discover New Suspicious Apps

We evaluate a total of 1,979 newly released (2015) apps.
Our approach raises a total of 127 alarms. Because of the lack
of ground truth in the evaluation of new apps, computing FP
requires substantial manual efforts on all these flagged apps.
We performed several manual studies on the flagged apps.
We list four of them which are identified as malicious by our
substantial manual analysis. The first two suspicious apps are
verified by our manual analysis, but are missed by Virus Total.



Virus Total does detect the latter two apps. To answer Q5,
our approach is capable of detecting new single-DRegion and
multiple-DRegions malware.

1) za.co.tuluntulu is a video app providing streaming TV
programs. However, it invokes multiple sensitive APIs to
perform surreptitious operations on the background, such as
accessing contacts, gathering phone state information, and
collecting geometric information.

2) com.herbertlaw.MortagageCaculator is an app for cal-
culating mortgage payments. It contains a benign DRegion
by the usage of the admob ad library. It also contains an
aggressive library called appflood in the malicious DRegion,
which collects privacy information by accessing the phone
state and then stores it in a temporary storage file.

3) com.goodyes.vpn.cn is a VPN support app with in-
app purchase and contains multiple DRegions. A malicious
package Lcom/ccit/mmwlan is integrated with a payment
service Lcom/alipay/* in one malicious DRegion. It collects
user name, password, and device information. It exfiltrates
information to a constant phone number.

4) longbin.helloworld is a simple calculator app with one
DRegion; however, it requests 10 critical permissions. It
modifies the SharedPreferences to affect the phone’s storage,
records the device ID and sends it out through executeHttpPost
without any user involvement.
Summary.

Our results validate the effectiveness of code heterogeneity
analysis in detecting Android malware. Our tool can also be
used to identify ad libraries and separate them from the main
app. These components can be confined at runtime in a new
restricted environment, as proposed in [23].

VI. DISCUSSION AND LIMITATIONS

Graph Accuracy. Our current prototype is built on the
smali code intermediate representation for low overhead.
Machine-learning based approaches require a large number of
apps for training. This graph generation is based on analyzing
patterns on the instructions of smali code. Our approach
may miss detection of some data-dependence edges (e.g.
implicit ICCs [13] and onBind functions), because of a lack
of flow sensitivity [18] [19]. Our analysis under-approximates
the dependence-related graph because of the missing edges.
Context- and flow-sensitive program analysis improves the
graph accuracy but increases analysis overhead. To balance the
performance and the accuracy in constructing the graphs is one
of our future directions. We plan to extend our prototype to an
advanced program analysis technique without compromising
the performance.

Dynamic Code. Our current prototype is built on static
analysis. The prototype suffers the under-approximation prob-
lem because of dynamic code. How to analyze dynamic code
is outside the scope of our analysis. Static analysis cannot
accurately approximate dependence relations that can be only
identified dynamically [25], e.g, reflection, JNI and native
code. The lack of dynamic analysis results to missing edges in
the graph construction, which may introduce extra DRegions

in the classification. Extra DRegions skew classification results
because of the imprecision of features. However, the impact
of dynamic obfuscation is limited in our analysis. Androi-
dLeaks [15] found that only 7% of apps contain the native
code. We plan to extend our prototype with a hybrid static and
dynamic analysis. The hybrid analysis enhances the resistance
of obfuscation techniques.

Integrated Malware. Our future work will generalize our
heterogeneity analysis by supporting the analysis of complex
code structures where there is no clear boundary between
segments of code. Our current prototype is not designed to
detect malicious DRegions that are semantically connected
and integrated with the rest of an app. Advanced repackaged
malware may be produced by adopting code rewriting tech-
niques, where malicious code is triggered by hijacking normal
code execution [10]. In that case, partitioning the dependence
graph into DRegions would be challenging, because of their
connectivities. However, to generate such malware, malicious
writers need to have a more comprehensive knowledge about
the execution of the original app, which is not common. One
may need to make careful cuts to the dependence graph to
isolate (superficially) connected components [3] [6], based on
their semantics and functionality.

VII. RELATED WORK

Repackaged Malware Detection. DroidMOSS [33] applied
a fuzzy hashing technique to generate a fingerprint to detect
app repackaging, the fingerprint is computed by hashing each
subset of the entire opcode sequences. Juxtapp [16] examined
code similarity through features of k-grams of opcode se-
quences. ResDroid [22] combined the activity layout resources
with the relationship among activities to detect repackaged
malware. Zhou et al. [32] detected the piggybacked code based
on the signature comparison. However, the code level similar-
ity comparisons are vulnerable to obfuscation technique, which
is largely used in app repackaging. To improve obfuscation
resilience, Potharaju et al. [21] provided three-level detection
of plagiarized apps, which is based on the bytecode-level
symbol table and method-level abstract syntax tree (AST).

Solutions have been proposed on the similarity comparison
of apps based on graph representations. DNADroid [8] com-
pared the program dependence graphs of apps to examine the
code reuse. AnDarwin [9] speeds up DNADroid by deploying
semantic blocks in program dependence graphs, and then
deployed locality hashing to find code clones. DroidSim [24]
used component-based control flow graph to measure the
similarity of apps. ViewDroid [30] focused on how apps define
and encode user’s navigation behaviors by using UI transition
graph. DroidLegacy [11] detected a family of apps based on
the extracted signature.

Instead of finding pairs of similar apps, our approach
explores the code heterogeneity for detecting malicious code
and benign code. Our approach avoids the expensive and often
error-prone whole-app comparisons. It complements existing
similarity-based repackage detection approaches.



Machine-Learning-based Malware Detection. Peng et
al. [20] used the requested permissions to construct different
probabilistic generative models. Wolfe et al. [27] used the
frequencies of n-grams decompiled Java bytecode as features.
DroidAPIMiner [1] and DroidMiner [28] extracted features
from API calls invoked in the app. Drebin [2] gathered as many
features including APIs, permissions, components to represent
an app, and then uses the collected information for classifica-
tion. Gascon et al. [14] transformed the function call graph into
features to conduct the classification. AppContext [29] adopted
context factors such as events and conditions that lead to a
sensitive calls as features for classifying malicious and benign
method calls. Crowdroid [5] used low-level kernel system
call traces as features. These solutions cannot recognize code
heterogeneity in apps, as they do not partition a program into
regions. In comparison, features in our approach are extracted
from each DRegion to profile both benign and malicious
DRegion behaviors.

VIII. CONCLUSIONS AND FUTURE WORK

We addressed the problem of detecting repackaged malware
through code heterogeneity analysis. We demonstrated its ap-
plication in classifying semantically disjoint code regions. Our
preliminary experimental results showed that our prototype is
very effective in detecting repackaged malware and Android
malware in general. For future work, we plan to improve
our code heterogeneity techniques by enhancing dependence
graphs with context and flow sensitivities.
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