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Botnet threats are pervasive 

botmaster 

How big are botnets? E.g., ~ 6 million bots found by AT&T, 
average 3-5% enterprise assets infected by botnets [GTISC 08] 

Mariposa botnet 12 million IPs;  
Stolen data belonging to 800K users; 
Malware changes every 48 hours; 
Attacker uses real name in DNS  

Government 

Corporate 

Individual 

Security breaches 
Compromise info 

Identity theft 
Financial loses 

Financial loses 
IP theft 

Source: GTISC, PandaSolution 

Map of Mariposa bots  

Malware installation 
 E.g., drive-by downloads: 450,000 
out of 4.5 millions URLs [Google 08] 
   



Evolving landscape of attacks 
[1980’s - early 1990’s]
Curiosity fueled hacking: 
capability demonstration 
of hackers 
 
[late 1990’s – early 2000] 
Financial driven attacks: 
spam, stealing credit 
cards, phishing, large-
scale botnets 
 
 

[late 2000 – present] 
Targeted attacks: stealing 
proprietary information, 
information warfare 
 
Challenges caused by:  
Scale, complexity, 
anonymity 
 

Internet was a friendly place. Security problem 
then was a day at the beach.  

-- Barbara Fraser ‘08 



Detecting malware – code vs. behavior 

First academic use of term virus by Fred Cohen in 1984, 
who credits advisor Len Adleman with coining it 

 
Signature based scanning 

–  Analyze malware samples, extract signatures, and statically 
scan the file system for malicious code 

But malware may encrypt/obfuscate itself 
–  To detect malware behaviors at run time (dynamically) 
–  E.g., system call execution, memory/stack access 

But what about zero-day malware/exploit? 
–  Anomaly detection 

But how to define the normalcy of a program? 
       D. Denning ’87: anomaly detection 

 
 



Problem: how to ensure system integrity
 （系统完整性）? 



Our approach:  host-based bot detection by enforcing normal system 
and network patterns 
 

Motivation: Humans and bots have distinct patterns when interacting 
with computers 
 

Challenge 1: How to find robust features? 
 
Challenge 2: How to prevent bot forgery? 
 
 
 

Challenges in Winning Bot Wars 

Trusted computing platform 

Root Key 

Platform Registers 

SHA-1 hash 

User inputs and activities 



Using our user-intention based anomaly 
detection techniques, a PC owner wants to 
know: 

•  Who is using the computer  
•  Where the keystroke is from 
•  Where the packet is from 
•  What/who causes outbound traffic 
•  What/who downloads files on the 

computer 
•  Whether or not the apps behave  

For preserving system integrity 



Know who is using the computer  



Keystroke Dynamics Based Authentication 

Related keystroke dynamics 
[MRW CCS 99] [MR CCS 97] 

Keystroke timing follows a Gaussian distribution  

TUBA (Telling hUman and Bot Apart) 

 Use Scenario 

 1. Training Phase: user keystroke data collected 
 2. TUBA challenge: asks user to prove identity by typing a string 

TUBA challenge is personalized 

Used support vector machine (SVM)  for classification, 92.26% TP, 3.39% FP  



How robust is keystroke dynamics based authentication 
against forgery attacks? 



Our Architecture and Adversary Model 
Client-server architecture 

 Data collection & processing on a trusted server 
 
 
 
 
 
 
 
 
 
Adversary model 
•  Infect the user’s computer  
•  Monitor, intercept and modify network traffic 
•  Collect and inject keystroke information of the general public, 

except the owner 
Can also support a stand-alone architecture 

Hardware 

Kernel & X 
Server 

TUBA 

SSH 
tunnel 

Hardware 

Kernel & X Client 

Evaluator Timing 
models 

X key 
events 

evaluation 

Alice’s PC 



Human vs. Bots 

String GaussianBot NoiseBot 
TP FP TP FP 

www.cooper.edu 96.29% 2.00% 100.0% 0.00% 

1calend4r 93.74% 3.43% 97.71% 1.43% 
deianstefan@gmail.com 96.57% 1.71% 99.71% 0.29% 

Keystroke timing analysis is robust against  the bots that we studied Summary: Keystroke timing analysis is robust against statistical bots studied 

20 users: 10 males 10 females, ages [18-23] 
Session time [20 min – 1 hr] 
Collected samples: 6 words, 35 samples of each 

Duration of i-th character as random variable Xi> 0 
 

1. Gaussian distribution with mean µi and variance σi
2:  

  Xi ~ N(µi,σi
2)  -- GaussianBot 

2. Constant with additive uniform noise:  
  Xi  ~ µi + U(-ηi; ηi) -- NoiseBot 

 Assuming first-order Markov model 



Deian Stefan, Xiaokui Shu, and Danfeng Yao.  
Robustness of Keystroke-Dynamics Based Biometrics 
Against Synthetic Forgeries.  
Computers & Security. 31. 109-121. 2012. Elsevier. 

Keystroke dynamics authentication work appeared in:  



Know where your keystroke is from 



Preventing Stronger Adversaries With TPM 
A stronger adversary may: 
•   Gain root on the computer 
•   Collect the owner’s keystroke information 
•   Tampering TUBA client 

Our prototype on Intel Core 2 
Duo (INT-C0-102) following 
TPM Interface Spec 1.2 
 

Our goal: to prevent fake key event injections & tampering TUBA 

Hardware TPM 

Kernel trust agent 

Client 

Hardware 

Kernel 

Server 

Evaluator 
SVM 
models 

Trusted-key event,  
 TPM quote or key exch. 

Encryption + 
authentication 

Evaluation or key exch. 

Related TCB/TPM work [MPR NDSS 09] [GBMR, NSDI 08] [MPPRI, EuroSys 08] 



Highlights in TUBA Integrity Service 
1. Server verifies trusted boot of client 

2. Key exchange between agent & server 
3. Trust agent signs keystroke events 

4. Client relays signed events 
  
   
 

Trusted-key event,  
 TPM quote or key exch. 

Encryption + 
authentication Hardware TPM 

Kernel trust 
agent 

Client Server 

Secrecy of Signing key is guaranteed 
  

Sign a packet (SHA1) with a 256-bit key:   18.0 usec  
Encrypt a packet (AES-CBC) with a 256-bit key:   67.6 usec  
(Averaged on 1312 keystroke events with TPM key initiation.)‏ 
Bandwidth (i.e., communication overhead):   13 KBps 
 

  
Summary: Robust TUBA  introduces minimal overhead and practically 
causes no delay even for a fast typist   



Our Approach: Cryptographic 
Provenance Verification (CPV)                 ‏ 

Data-provenance integrity – origin of kernel-level data not spoofed  

CPV differs from traditional digital signatures 

Signs a document Signer knows what to 
sign and what not  

 CPV - a robust attestation mechanism that ensures 
true origin of data 
  TUBA embodies our CPV approach 



Know where your outbound network 
packet is from 

i.e., to catch all outbound traffic from a host for inspection 



Apply Cryptographic Provenance 
Verification to Network Stack 

User Space 

Kernel Space 

Network Stack 

2 Kernel Modules: 
  Sign Module 
  Verify Module 
 
Key management:  
  Key derived from TPM 
 
Technicalities: 
  Defragmentation  
  Signature transfer 
 
Prototype in Windows 

Application 

Transport 

Network 

Data Link 

Physical 

Malware  
Traffic 

Legitimate Traffic 

Tampering 
Prevention 

1

TPM-based  
integrity service 

3 

Sign 
Module 

Verify 
Module 

Signatures 2 

Our solution enables advanced traffic inspection – no packet left behind 



Throughput Analysis in CompareView 
•  As packet size increases, overhead decreases 
•  < 5% overhead for 64KB packet size 
•  Signing partial packet reduces overhead 

Successfully detected several real-world and synthetic rootkit-based malware 

Summary: Our work enables robust personal firewall 

Fu_Rootkit, hxdef, AFXRootkit, our proof-of-concept rootkit 

No 

With 



Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan, and Danfeng Yao.  
Data-Provenance Verification For Secure Hosts.  
IEEE Transactions of Dependable and Secure Computing 
(TDSC). 9(2), 173-183. March/April 2012.  

Cryptographic provenance verification work appeared in:  



Know what/who causes your outbound traffic 



Motivation for traffic anomaly 
detection on a host 

How	
  to	
  distinguish	
  the	
  malicious	
  
outbound	
  packets	
  from	
  the	
  
legitimate	
  ones	
  on	
  a	
  host?	
  	
  



Our approach for traffic anomaly 
detection 

To	
  enforce	
  dependence	
  properties	
  among	
  
outbound	
  network	
  requests	
  of	
  a	
  host	
  

Key observation	
  
• User	
  inputs	
  trigger	
  outbound	
  network	
  
packets	
  



To	
  fetch	
  index.html	
  

To	
  sent	
  i
ndex.htm

l	
  

To	
  fetch	
  more	
  Ailes	
  (css/js	
  etc.)	
  

A Technical Challenge 

To	
  parse	
  the	
  
html	
  Aile	
  

Browser automatically sends many outbound requests. 



Work Flow of CR-Miner 

User Events 

Dependence 
Rules 

CR-Miner 

Traffic events (outbound) 

User event 
 

Traffic event 
 

Traffic dependence graph (TDG) 

Threat	
  model:	
  application-­‐level	
  malware	
  



Events and their attributes 

      User events 
 
 
 
Traffic event 
 
      Traffic events 
 

Timestamp Event Name	
   Value	
   URL	
  
A	
   0:0:01.077	
   KeyDown	
   Return	
   http://www.engadget.com/	
  
B	
   0:0:02.910	
   MouseClick	
  -­‐	
  Left	
   X=1069	
  Y=474	
   http://www.cnet.com/	
  
C	
   0:0:03.000	
   Wheel	
   -­‐120	
   N/A	
  

Timestamp	
   Object 
Requested	
  

Remote Domain 
Name	
   Referrer	
  

1	
   0:0:02.863	
   /	
   www.engadget.com	
   http://www.engadget.com/	
  
2	
   0:0:02.873	
   /media/main.css	
  	
   www.engadget.com	
   http://www.engadget.com/...	
  
3	
   0:0:03.113	
   /	
   www.cnet.com	
   null	
  

Dependence	
  rules	
  specify	
  relations	
  of	
  
attributes	
  of	
  dependent	
  events	
  



Definitions in Our Traffic Dependency 
Graph (TDG)   

A	
   B	
   C	
   D	
  User	
  events	
  
(Root)	
  

	
  Traffic	
  events	
  
	
   1 

2 

3 8 

5 7 

4 6 

(Subroot)	
  
	
  

Timeline	
  

Definition of security: a legitimate traffic 
event belongs to a tree in a TDG that is 
rooted at a legitimate user event.  

Vagabond traffic event 



Our BFS-Based Algorithm to Construct 
Traffic Dependence Graph 

Traffic	
  events	
  
1 

2 3 8 

5 

7 4 

6 
Is_Subroot() 

Is_Child() 
9 

10 

B	
   D	
   F	
  A	
  User	
  events	
   C	
   E	
   G	
  H	
  

Input:	
  	
  	
  
	
  -­‐	
  an	
  existing	
  TDG	
  (trees	
  of	
  events,	
  which	
  root	
  at	
  user	
  events)	
  
	
  -­‐	
  a	
  new	
  outbound	
  trafAic	
  event	
  q	
  
Output:	
  	
  	
  -­‐	
  whether	
  or	
  not	
  q	
  is	
  legitimate	
  



Security Analysis 

-­‐	
  Forgery	
  of	
  events	
  and	
  defense	
  
-­‐	
  Piggybacking	
  attack	
  and	
  defense	
  

Integrity	
  of	
  trafAic	
  information	
  
•  Signer	
  and	
  veriAier	
  
•  Add	
  a	
  message	
  authentication	
  code	
  (MAC)	
  



Implementation Architecture 

System	
  
services	
  

(updates	
  etc.)	
  

	
  
Windows	
  API	
  

Hook	
  API	
  IP	
  Helper	
  API	
  LIBPCAP	
  API	
  

Application	
  Programs	
  
	
  

	
  
Other	
  App.	
  Browser	
  Signer	
  

CR-­‐Miner	
  Causal	
  relation	
  analyzer	
  
Process	
  module	
  Traf9ic	
  module	
  

Veri9ier	
  
Hook	
  module	
  

Our prototype in Windows is called CR-Miner. 



Questions to be answered in 
experimental evaluation 

•  Can we detect real-world stealthy malware traffic? 
•  How accurate is the dependency inference algorithm? 
•  How efficient is the BFS (breath-first search) based 

dependency inference algorithm? 
•  Does the inference accuracy suffer in noisy traffic? 

User	
  study	
  with	
  20	
  participants	
  
A	
  30-­‐minute	
  surAing	
  session	
  for	
  each	
  user 



Experiments 

Hit Rate # of User Cases Percentage (%) 
0.98 ≤ r < 0.985 1 5 
0.985 ≤ r < 0.99 2 10 
0.99 ≤ r < 0.995 4 20 

0.995 ≤ r < 1 10 50 
r = 1.00 3 15 

High	
  hit	
  rate:	
  	
  ≥	
  0.98	
  for	
  all	
  user	
  cases.	
  
Are	
  the	
  vagabond	
  trafAic	
  events	
  that	
  we	
  found	
  
real,	
  i.e.,	
  malicious?	
  

Hit rate r = percentage of traffic events whose causal 
     relations are identified by CR-Miner 



Experiments cont’d 

Does	
  the	
  inference	
  accuracy	
  suffer	
  in	
  
noisy	
  trafAic?	
  
• Accuracy	
  =	
  99.2%	
  in	
  merged	
  data	
  set	
  

Spyware	
  detection	
  
•  Infostealer	
  and	
  a	
  trojan	
  
• Proof-­‐of-­‐concept	
  password	
  snifAier	
  



Hao Zhang, Danfeng Yao, Naren Ramakrishnan, and Matthew Banick.  
User Intention-Based Traffic Dependence Analysis for Anomaly 
Detection.  
Workshop on Semantics and Security (WSCS), in conjunction with 
the IEEE Symposium on Security and Privacy. San Francisco, CA. 
May 2012. 

Traffic dependency work appeared in: 



Know what/who downloads files on your 
computer 



Drive-by Download Attacks	

Steps of malicious code injection & host infection  	


Legitimate web server 

A#acker	
   Victim user 

A#acker	
  compromises	
  	
  
a	
  legi0mate	
  server,	
  and	
  
uploads	
  malicious	
  JavaScript.	
  

User	
  visits	
  website	
  

A#acker	
  controls	
  the	
  infected	
  vic0m	
  

1 2

Compromised	
  server	
  
sends	
  back	
  malicious	
  
code	
  

3



Our approach for DBD detection: 
–  Monitor file-creation events and user actions 
–  Identify the dependency between them 

User	
  	
  
ac(ons	
  

System	
  
	
  events	
  

Key Observation: 
Legitimate system events should be triggered by users’ actions. 

Our User Intention Based DBD Detection 

Challenge: Browser automatically creates files  
E.g., a user indirectly triggers 482 file creation in Temporary Internet Files folder 
and 47 in Cookies directory within 30 minutes of surfing.  



Components and work flow 

Execution monitor	


Downloadable	
  area	
  

Input recorder  

File	
  system	
  monitor	
  

Accessible	
  area	
  	
  

DeWare prototype in Windows 7 Ultimate edition 



Dependency Rules Among Events 

 

–  Rule 1 File properties of events match. 

•  The file user confirms to create should be same as the one actually 
created. 

–  Rule 2 URLs match. 

•  The file should be downloaded from the URL that user requests. 

–  Rule 3 Process properties of events match. 

•  The process that receives input should be the one creating the file. 

–  Rule 4 Temporal constraint is satisfied. 

•  A legitimate file creation event should take place within a short 
threshold after a valid user-input event. 

A file creation event and its triggering user event need to 
satisfy dependency rules 



Evaluation of detection ability (2) 	


Against popular DBD exploits:  
–  We successfully detected the lab reproduced exploits:  

Ø Heap Feng Shui attack 

Ø HTML Object Memory Corruption Vunerability 

Ø Superbuddy through AOL activeX control 

Ø Adobe Flash player remote-code execution 

Ø Microsoft Data Access Component API misuse 

Ø DBD exploiting IE 7 XML library 



Evaluation of DBD detection ability (1) 	


Against real-world malicious websites 
 

Ø 84 out of 142 malicious websites were detected by 
DeWare  
Ø Some websites track incoming requests and a second visit would 

not trigger exploit 

Ø Malicious websites download .exe and/or .dll files 
Ø E.g., to \Temp folder 

Ø Popular exploit kits are used: 
Ø Phoenix exploit kit 
Ø Eleonore exploits pack 
Ø Targeting at multiple vulnerabilities including Flash, PDF, Java, and 

browser  



False positive evaluation	


False positive analysis is based on the temporal 
correlation is performed on the 21 user study data.  
 
The number of false alarms is small, less than 1%. 



Evaluations on commodity software on IE 
7 XML DBD attacks 

360 Safeguard 

v3.0 .1112  No detection 
360 v6.0.1 2008-6-16 No detection 
360 v6.0.1 2008-10-27 No detection 
360 v6.0.2 2009-10-14 Detected Heap Spray attack, 

shutdown iexplorer.exe 

Zonealarm Pro 

7.0.483 
Anti-spyware engine 
5.0.189 Captured a.exe trying to 

access internet. Clicked 
"Deny", but H.exe was still 
downloaded successfully 

8.0.400 
Anti-spyware engine 
5.0.209 

9.1.008 
Anti-spyware engine 
9.1.008  

Security Software 
Reaction 

Product 
Driver Engine 
Version Definition 

Trend Micro Internet 
Security Pro v8.952 

Pattern version 6.289 No detection 
Pattern version 6.587.50  No detection 

Microsoft Security 
Essentials 　 

V i r u s  D e f i n i t i o n 
1 . 6 9 . 8 2 5 S p y w a r e 
Definition 1.69.825   

Detected. User clicked clean 
the threats, but DBD files 
were still downloaded and 
not deleted by MSE. 

McAfee, Kaspersky, AVG 



Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell.  
Detecting Infection Onset With Behavior-Based Policies.  
In Proceedings of the Fifth International Conference on Network 
and System Security (NSS). Milan, Italy. Sep. 2011.  
 
 

 

Drive-by download detection work appeared in:  



Know whether or not your apps behave  

We have provided a white-box approach 



Legitimate or Malicious: an app-
classification problem 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Problem: How to classify unknown apps as benign or 
malicious? 
 
Source: http://news.cnet.com/8301-1009_3-57328575-83/androids-a-malware-magnet-saysmcafee/?tag=mncol;topStories 

 



Example of Malicious App: HippoSMS 

	
  

void onStart()

entry void onStart()

entry void sendsms(String, String, String)

void sendsms(“1066156686”, “8”, “msg”)

r0 = @param0: String r2 = @param2: Stringr1 = @param1: String

android.telephony.gsm.SmsManager.sendTextMessage(r0, r1, r2)

class MessageService 

void sendsms(String, String, String)

This malware sends SMS messages to a hard-coded 
premium-rated number without the user’s awareness 

public class MessageService{!
   .....!

!public void onStart(){!

!   sendsms("1066156686", "8", "");!

!}!

!public void sendsms(param1, 
param2, param3){!

       .....!

!   
localSmsManager.sendTextMessage(!

       param1, param2, param3);!

!}!

} 

A Data Dependence 
Graph Malicious code 



What is the norm? How to enforce it? 
Requests to access system resources  

should be based on user inputs / actions 

Our approach: 

Identify the dependency relation between critical 
system events and user-initiated events in programs  

Resources to protect from  
malicious programs:  
¨  File system access 
¨  Network access 
¨  Sensitive/personal data 

SendSMS() 

User inputs/ actions 

ReadFile() 

User inputs/actions 

✖ ✔ 



Our User-Centric Dependence 
Based Anomaly Detection Approach 

Our Static Analysis Tool: 
We utilize definition-use structures provided by Soot (a 

static analysis toolkit for Java)  
Our tool can analyze Java bytecode / source code 

Program 
source / bytecode 

Check dependency 
rule  

Classification 
results 

Data-flow 
analysis 

Identify user 
inputs/actions 

Data Dependence 
Graph 

Identify  
sensitive paths 

Identify critical 
functions API 



Evaluation Results on Legitimate and 
Malicious Android Apps 

Most malware apps tested do not satisfy our data dependence requirement 

App/Malware 
Name 

# of User Inputs/ 
Actions (Source) 

% of Sensitive Func. Calls 
without User Inputs 

Library of Sensitive 
Function Calls 

Le
gi

tim
at

e 

SendSMS 3 0% android.telephony.gsm 

BMI Calculator 2 0% android.app.Activity 

BluetoothChat 2 0% java.io.OutputStream 

SendMail 4 0% android.app.Activity 

Tip Calculator 4 0% android.widget 

M
al

ic
io

us
 

GGTracker.A 0 100% org.apache.http.impl.client 

HippoSMS 0 100% android.telephony.gsm  
android.content.ContentResolver  

Fakeneflic 3 0% org.apache.http.impl.client 

GoldDream 0 100% android.content.Context  
java.io.FileOutputStream 

Walk & Text 0 100% android.content.ContentResolver 
org.apache.http.impl.client 

RogueSPPush 0 100% android.telephony.gsm  
android.content.ContentResolver  

Dog Wars 0 100% android.telephony.gsm  
android.content.ContentResolver  



Security Analysis 

Attacks Countermeasures 

Phishing apps / social 
engineering apps 

Site authentication and user education 

Using superfluous user 
inputs and actions 

Easy to detect by using our approach to 
track the dependency 

Code obfuscation or 
Java reflection  

Dynamic taint analysis 



Karim Elish, Danfeng Yao and Barbara Ryder. 
User-Centric Dependence Analysis For Identifying Malicious Mobile Apps.  
In Proceedings of the Workshop on Mobile Security Technologies 
(MoST), in conjunction with the IEEE Symposium on Security and Privacy. 
San Francisco, CA. May 2012. 
 
  

Program analysis work appeared in:  



Using our user-intention based anomaly 
detection techniques, we know: 

•  Who is using the computer  
•  Where the keystroke is from 
•  Where the packet is from 
•  What/who causes your outbound traffic 
•  What/who downloads files on your 

computer 
•  Whether or not your apps behave  

For preserving system integrity 



Conclusions and Future Work 

User-intention based anomaly detection is a promising 
approach; we’ve demonstrated its use in detecting 
anomalies in  

•  network traffic, 
•  file system events,  
•  apps,  
•  keystrokes … 

 
Future work: 
 More investigation on white box anomaly detection 

and analysis  
 Android based mobile system integrity 
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