
 Danfeng (Daphne) Yao
 Assistant Professor

 Department of Computer Science
 Virginia Tech

基于用户意图的异常检测
User Intention Based Anomaly Detection

Tianjin University June 2012

Botnet threats are pervasive

botmaster

How big are botnets? E.g., ~ 6 million bots found by AT&T,
average 3-5% enterprise assets infected by botnets [GTISC 08]

Mariposa botnet 12 million IPs;
Stolen data belonging to 800K users;
Malware changes every 48 hours;
Attacker uses real name in DNS

Government

Corporate

Individual

Security breaches
Compromise info

Identity theft
Financial loses

Financial loses
IP theft

Source: GTISC, PandaSolution

Map of Mariposa bots

Malware installation
 E.g., drive-by downloads: 450,000
out of 4.5 millions URLs [Google 08]

Evolving landscape of attacks
[1980’s - early 1990’s]
Curiosity fueled hacking:
capability demonstration
of hackers

[late 1990’s – early 2000]
Financial driven attacks:
spam, stealing credit
cards, phishing, large-
scale botnets

[late 2000 – present]
Targeted attacks: stealing
proprietary information,
information warfare

Challenges caused by:
Scale, complexity,
anonymity

Internet was a friendly place. Security problem
then was a day at the beach.

-- Barbara Fraser ‘08

Detecting malware – code vs. behavior

First academic use of term virus by Fred Cohen in 1984,
who credits advisor Len Adleman with coining it

Signature based scanning

–  Analyze malware samples, extract signatures, and statically
scan the file system for malicious code

But malware may encrypt/obfuscate itself
–  To detect malware behaviors at run time (dynamically)
–  E.g., system call execution, memory/stack access

But what about zero-day malware/exploit?
–  Anomaly detection

But how to define the normalcy of a program?
 D. Denning ’87: anomaly detection

Problem: how to ensure system integrity
 （系统完整性）?

Our approach: host-based bot detection by enforcing normal system
and network patterns

Motivation: Humans and bots have distinct patterns when interacting
with computers

Challenge 1: How to find robust features?

Challenge 2: How to prevent bot forgery?

Challenges in Winning Bot Wars

Trusted computing platform

Root Key

Platform Registers

SHA-1 hash

User inputs and activities

Using our user-intention based anomaly
detection techniques, a PC owner wants to
know:

•  Who is using the computer
•  Where the keystroke is from
•  Where the packet is from
•  What/who causes outbound traffic
•  What/who downloads files on the

computer
•  Whether or not the apps behave

For preserving system integrity

Know who is using the computer

Keystroke Dynamics Based Authentication

Related keystroke dynamics
[MRW CCS 99] [MR CCS 97]

Keystroke timing follows a Gaussian distribution

TUBA (Telling hUman and Bot Apart)

 Use Scenario

 1. Training Phase: user keystroke data collected
 2. TUBA challenge: asks user to prove identity by typing a string

TUBA challenge is personalized

Used support vector machine (SVM) for classification, 92.26% TP, 3.39% FP

How robust is keystroke dynamics based authentication
against forgery attacks?

Our Architecture and Adversary Model
Client-server architecture

 Data collection & processing on a trusted server

Adversary model
•  Infect the user’s computer
•  Monitor, intercept and modify network traffic
•  Collect and inject keystroke information of the general public,

except the owner
Can also support a stand-alone architecture

Hardware

Kernel & X
Server

TUBA

SSH
tunnel

Hardware

Kernel & X Client

Evaluator Timing
models

X key
events

evaluation

Alice’s PC

Human vs. Bots

String GaussianBot NoiseBot
TP FP TP FP

www.cooper.edu 96.29% 2.00% 100.0% 0.00%

1calend4r 93.74% 3.43% 97.71% 1.43%
deianstefan@gmail.com 96.57% 1.71% 99.71% 0.29%

Keystroke timing analysis is robust against the bots that we studied Summary: Keystroke timing analysis is robust against statistical bots studied

20 users: 10 males 10 females, ages [18-23]
Session time [20 min – 1 hr]
Collected samples: 6 words, 35 samples of each

Duration of i-th character as random variable Xi> 0

1. Gaussian distribution with mean µi and variance σi
2:

 Xi ~ N(µi,σi
2) -- GaussianBot

2. Constant with additive uniform noise:
 Xi ~ µi + U(-ηi; ηi) -- NoiseBot

 Assuming first-order Markov model

Deian Stefan, Xiaokui Shu, and Danfeng Yao.
Robustness of Keystroke-Dynamics Based Biometrics
Against Synthetic Forgeries.
Computers & Security. 31. 109-121. 2012. Elsevier.

Keystroke dynamics authentication work appeared in:

Know where your keystroke is from

Preventing Stronger Adversaries With TPM
A stronger adversary may:
•  Gain root on the computer
•  Collect the owner’s keystroke information
•  Tampering TUBA client

Our prototype on Intel Core 2
Duo (INT-C0-102) following
TPM Interface Spec 1.2

Our goal: to prevent fake key event injections & tampering TUBA

Hardware TPM

Kernel trust agent

Client

Hardware

Kernel

Server

Evaluator
SVM
models

Trusted-key event,
 TPM quote or key exch.

Encryption +
authentication

Evaluation or key exch.

Related TCB/TPM work [MPR NDSS 09] [GBMR, NSDI 08] [MPPRI, EuroSys 08]

Highlights in TUBA Integrity Service
1. Server verifies trusted boot of client

2. Key exchange between agent & server
3. Trust agent signs keystroke events

4. Client relays signed events

Trusted-key event,
 TPM quote or key exch.

Encryption +
authentication Hardware TPM

Kernel trust
agent

Client Server

Secrecy of Signing key is guaranteed

Sign a packet (SHA1) with a 256-bit key: 18.0 usec
Encrypt a packet (AES-CBC) with a 256-bit key: 67.6 usec
(Averaged on 1312 keystroke events with TPM key initiation.)‏
Bandwidth (i.e., communication overhead): 13 KBps

Summary: Robust TUBA introduces minimal overhead and practically
causes no delay even for a fast typist

Our Approach: Cryptographic
Provenance Verification (CPV) ‏

Data-provenance integrity – origin of kernel-level data not spoofed

CPV differs from traditional digital signatures

Signs a document Signer knows what to
sign and what not

 CPV - a robust attestation mechanism that ensures
true origin of data
 TUBA embodies our CPV approach

Know where your outbound network
packet is from

i.e., to catch all outbound traffic from a host for inspection

Apply Cryptographic Provenance
Verification to Network Stack

User Space

Kernel Space

Network Stack

2 Kernel Modules:
 Sign Module
 Verify Module

Key management:
 Key derived from TPM

Technicalities:
 Defragmentation
 Signature transfer

Prototype in Windows

Application

Transport

Network

Data Link

Physical

Malware
Traffic

Legitimate Traffic

Tampering
Prevention

1

TPM-based
integrity service

3

Sign
Module

Verify
Module

Signatures 2

Our solution enables advanced traffic inspection – no packet left behind

Throughput Analysis in CompareView
•  As packet size increases, overhead decreases
•  < 5% overhead for 64KB packet size
•  Signing partial packet reduces overhead

Successfully detected several real-world and synthetic rootkit-based malware

Summary: Our work enables robust personal firewall

Fu_Rootkit, hxdef, AFXRootkit, our proof-of-concept rootkit

No

With

Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan, and Danfeng Yao.
Data-Provenance Verification For Secure Hosts.
IEEE Transactions of Dependable and Secure Computing
(TDSC). 9(2), 173-183. March/April 2012.

Cryptographic provenance verification work appeared in:

Know what/who causes your outbound traffic

Motivation for traffic anomaly
detection on a host

How	
 to	
 distinguish	
 the	
 malicious	

outbound	
 packets	
 from	
 the	

legitimate	
 ones	
 on	
 a	
 host?	
 	

Our approach for traffic anomaly
detection

To	
 enforce	
 dependence	
 properties	
 among	

outbound	
 network	
 requests	
 of	
 a	
 host	

Key observation	

• User	
 inputs	
 trigger	
 outbound	
 network	

packets	

To	
 fetch	
 index.html	

To	
 sent	
 i
ndex.htm

l	

To	
 fetch	
 more	
 Ailes	
 (css/js	
 etc.)	

A Technical Challenge

To	
 parse	
 the	

html	
 Aile	

Browser automatically sends many outbound requests.

Work Flow of CR-Miner

User Events

Dependence
Rules

CR-Miner

Traffic events (outbound)

User event

Traffic event

Traffic dependence graph (TDG)

Threat	
 model:	
 application-­‐level	
 malware	

Events and their attributes

 User events

Traffic event

 Traffic events

Timestamp Event Name	
 Value	
 URL	

A	
 0:0:01.077	
 KeyDown	
 Return	
 http://www.engadget.com/	

B	
 0:0:02.910	
 MouseClick	
 -­‐	
 Left	
 X=1069	
 Y=474	
 http://www.cnet.com/	

C	
 0:0:03.000	
 Wheel	
 -­‐120	
 N/A	

Timestamp	
 Object
Requested	

Remote Domain
Name	
 Referrer	

1	
 0:0:02.863	
 /	
 www.engadget.com	
 http://www.engadget.com/	

2	
 0:0:02.873	
 /media/main.css	
 	
 www.engadget.com	
 http://www.engadget.com/...	

3	
 0:0:03.113	
 /	
 www.cnet.com	
 null	

Dependence	
 rules	
 specify	
 relations	
 of	

attributes	
 of	
 dependent	
 events	

Definitions in Our Traffic Dependency
Graph (TDG)

A	
 B	
 C	
 D	
 User	
 events	

(Root)	

	
 Traffic	
 events	

	
 1

2

3 8

5 7

4 6

(Subroot)	

	

Timeline	

Definition of security: a legitimate traffic
event belongs to a tree in a TDG that is
rooted at a legitimate user event.

Vagabond traffic event

Our BFS-Based Algorithm to Construct
Traffic Dependence Graph

Traffic	
 events	

1

2 3 8

5

7 4

6
Is_Subroot()

Is_Child()
9

10

B	
 D	
 F	
 A	
 User	
 events	
 C	
 E	
 G	
 H	

Input:	
 	
 	

	
 -­‐	
 an	
 existing	
 TDG	
 (trees	
 of	
 events,	
 which	
 root	
 at	
 user	
 events)	

	
 -­‐	
 a	
 new	
 outbound	
 trafAic	
 event	
 q	

Output:	
 	
 	
 -­‐	
 whether	
 or	
 not	
 q	
 is	
 legitimate	

Security Analysis

-­‐	
 Forgery	
 of	
 events	
 and	
 defense	

-­‐	
 Piggybacking	
 attack	
 and	
 defense	

Integrity	
 of	
 trafAic	
 information	

•  Signer	
 and	
 veriAier	

•  Add	
 a	
 message	
 authentication	
 code	
 (MAC)	

Implementation Architecture

System	

services	

(updates	
 etc.)	

	

Windows	
 API	

Hook	
 API	
 IP	
 Helper	
 API	
 LIBPCAP	
 API	

Application	
 Programs	

	

	

Other	
 App.	
 Browser	
 Signer	

CR-­‐Miner	
 Causal	
 relation	
 analyzer	

Process	
 module	
 Traf9ic	
 module	

Veri9ier	

Hook	
 module	

Our prototype in Windows is called CR-Miner.

Questions to be answered in
experimental evaluation

•  Can we detect real-world stealthy malware traffic?
•  How accurate is the dependency inference algorithm?
•  How efficient is the BFS (breath-first search) based

dependency inference algorithm?
•  Does the inference accuracy suffer in noisy traffic?

User	
 study	
 with	
 20	
 participants	

A	
 30-­‐minute	
 surAing	
 session	
 for	
 each	
 user

Experiments

Hit Rate # of User Cases Percentage (%)
0.98 ≤ r < 0.985 1 5
0.985 ≤ r < 0.99 2 10
0.99 ≤ r < 0.995 4 20

0.995 ≤ r < 1 10 50
r = 1.00 3 15

High	
 hit	
 rate:	
 	
 ≥	
 0.98	
 for	
 all	
 user	
 cases.	

Are	
 the	
 vagabond	
 trafAic	
 events	
 that	
 we	
 found	

real,	
 i.e.,	
 malicious?	

Hit rate r = percentage of traffic events whose causal
 relations are identified by CR-Miner

Experiments cont’d

Does	
 the	
 inference	
 accuracy	
 suffer	
 in	

noisy	
 trafAic?	

• Accuracy	
 =	
 99.2%	
 in	
 merged	
 data	
 set	

Spyware	
 detection	

•  Infostealer	
 and	
 a	
 trojan	

• Proof-­‐of-­‐concept	
 password	
 snifAier	

Hao Zhang, Danfeng Yao, Naren Ramakrishnan, and Matthew Banick.
User Intention-Based Traffic Dependence Analysis for Anomaly
Detection.
Workshop on Semantics and Security (WSCS), in conjunction with
the IEEE Symposium on Security and Privacy. San Francisco, CA.
May 2012.

Traffic dependency work appeared in:

Know what/who downloads files on your
computer

Drive-by Download Attacks	

Steps of malicious code injection & host infection 	

Legitimate web server

A#acker	
 Victim user

A#acker	
 compromises	
 	

a	
 legi0mate	
 server,	
 and	

uploads	
 malicious	
 JavaScript.	

User	
 visits	
 website	

A#acker	
 controls	
 the	
 infected	
 vic0m	

1 2

Compromised	
 server	

sends	
 back	
 malicious	

code	

3

Our approach for DBD detection:
–  Monitor file-creation events and user actions
–  Identify the dependency between them

User	
 	

ac(ons	

System	

	
 events	

Key Observation:
Legitimate system events should be triggered by users’ actions.

Our User Intention Based DBD Detection

Challenge: Browser automatically creates files
E.g., a user indirectly triggers 482 file creation in Temporary Internet Files folder
and 47 in Cookies directory within 30 minutes of surfing.

Components and work flow

Execution monitor	

Downloadable	
 area	

Input recorder

File	
 system	
 monitor	

Accessible	
 area	
 	

DeWare prototype in Windows 7 Ultimate edition

Dependency Rules Among Events

–  Rule 1 File properties of events match.

•  The file user confirms to create should be same as the one actually
created.

–  Rule 2 URLs match.

•  The file should be downloaded from the URL that user requests.

–  Rule 3 Process properties of events match.

•  The process that receives input should be the one creating the file.

–  Rule 4 Temporal constraint is satisfied.

•  A legitimate file creation event should take place within a short
threshold after a valid user-input event.

A file creation event and its triggering user event need to
satisfy dependency rules

Evaluation of detection ability (2) 	

Against popular DBD exploits:
–  We successfully detected the lab reproduced exploits:

Ø Heap Feng Shui attack

Ø HTML Object Memory Corruption Vunerability

Ø Superbuddy through AOL activeX control

Ø Adobe Flash player remote-code execution

Ø Microsoft Data Access Component API misuse

Ø DBD exploiting IE 7 XML library

Evaluation of DBD detection ability (1) 	

Against real-world malicious websites

Ø 84 out of 142 malicious websites were detected by
DeWare
Ø Some websites track incoming requests and a second visit would

not trigger exploit

Ø Malicious websites download .exe and/or .dll files
Ø E.g., to \Temp folder

Ø Popular exploit kits are used:
Ø Phoenix exploit kit
Ø Eleonore exploits pack
Ø Targeting at multiple vulnerabilities including Flash, PDF, Java, and

browser

False positive evaluation	

False positive analysis is based on the temporal
correlation is performed on the 21 user study data.

The number of false alarms is small, less than 1%.

Evaluations on commodity software on IE
7 XML DBD attacks

360 Safeguard

v3.0 .1112 No detection
360 v6.0.1 2008-6-16 No detection
360 v6.0.1 2008-10-27 No detection
360 v6.0.2 2009-10-14 Detected Heap Spray attack,

shutdown iexplorer.exe

Zonealarm Pro

7.0.483
Anti-spyware engine
5.0.189 Captured a.exe trying to

access internet. Clicked
"Deny", but H.exe was still
downloaded successfully

8.0.400
Anti-spyware engine
5.0.209

9.1.008
Anti-spyware engine
9.1.008

Security Software
Reaction

Product
Driver Engine
Version Definition

Trend Micro Internet
Security Pro v8.952

Pattern version 6.289 No detection
Pattern version 6.587.50 No detection

Microsoft Security
Essentials 　

V i r u s D e f i n i t i o n
1 . 6 9 . 8 2 5 S p y w a r e
Definition 1.69.825

Detected. User clicked clean
the threats, but DBD files
were still downloaded and
not deleted by MSE.

McAfee, Kaspersky, AVG

Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell.
Detecting Infection Onset With Behavior-Based Policies.
In Proceedings of the Fifth International Conference on Network
and System Security (NSS). Milan, Italy. Sep. 2011.

Drive-by download detection work appeared in:

Know whether or not your apps behave

We have provided a white-box approach

Legitimate or Malicious: an app-
classification problem

Problem: How to classify unknown apps as benign or
malicious?

Source: http://news.cnet.com/8301-1009_3-57328575-83/androids-a-malware-magnet-saysmcafee/?tag=mncol;topStories

Example of Malicious App: HippoSMS

	

void onStart()

entry void onStart()

entry void sendsms(String, String, String)

void sendsms(“1066156686”, “8”, “msg”)

r0 = @param0: String r2 = @param2: Stringr1 = @param1: String

android.telephony.gsm.SmsManager.sendTextMessage(r0, r1, r2)

class MessageService

void sendsms(String, String, String)

This malware sends SMS messages to a hard-coded
premium-rated number without the user’s awareness

public class MessageService{!
 !

!public void onStart(){!

! sendsms("1066156686", "8", "");!

!}!

!public void sendsms(param1,
param2, param3){!

 !

!
localSmsManager.sendTextMessage(!

 param1, param2, param3);!

!}!

}

A Data Dependence
Graph Malicious code

What is the norm? How to enforce it?
Requests to access system resources

should be based on user inputs / actions

Our approach:

Identify the dependency relation between critical
system events and user-initiated events in programs

Resources to protect from
malicious programs:
¨  File system access
¨  Network access
¨  Sensitive/personal data

SendSMS()

User inputs/ actions

ReadFile()

User inputs/actions

✖ ✔

Our User-Centric Dependence
Based Anomaly Detection Approach

Our Static Analysis Tool:
We utilize definition-use structures provided by Soot (a

static analysis toolkit for Java)
Our tool can analyze Java bytecode / source code

Program
source / bytecode

Check dependency
rule

Classification
results

Data-flow
analysis

Identify user
inputs/actions

Data Dependence
Graph

Identify
sensitive paths

Identify critical
functions API

Evaluation Results on Legitimate and
Malicious Android Apps

Most malware apps tested do not satisfy our data dependence requirement

App/Malware
Name

of User Inputs/
Actions (Source)

% of Sensitive Func. Calls
without User Inputs

Library of Sensitive
Function Calls

Le
gi

tim
at

e

SendSMS 3 0% android.telephony.gsm

BMI Calculator 2 0% android.app.Activity

BluetoothChat 2 0% java.io.OutputStream

SendMail 4 0% android.app.Activity

Tip Calculator 4 0% android.widget

M
al

ic
io

us

GGTracker.A 0 100% org.apache.http.impl.client

HippoSMS 0 100% android.telephony.gsm
android.content.ContentResolver

Fakeneflic 3 0% org.apache.http.impl.client

GoldDream 0 100% android.content.Context
java.io.FileOutputStream

Walk & Text 0 100% android.content.ContentResolver
org.apache.http.impl.client

RogueSPPush 0 100% android.telephony.gsm
android.content.ContentResolver

Dog Wars 0 100% android.telephony.gsm
android.content.ContentResolver

Security Analysis

Attacks Countermeasures

Phishing apps / social
engineering apps

Site authentication and user education

Using superfluous user
inputs and actions

Easy to detect by using our approach to
track the dependency

Code obfuscation or
Java reflection

Dynamic taint analysis

Karim Elish, Danfeng Yao and Barbara Ryder.
User-Centric Dependence Analysis For Identifying Malicious Mobile Apps.
In Proceedings of the Workshop on Mobile Security Technologies
(MoST), in conjunction with the IEEE Symposium on Security and Privacy.
San Francisco, CA. May 2012.

Program analysis work appeared in:

Using our user-intention based anomaly
detection techniques, we know:

•  Who is using the computer
•  Where the keystroke is from
•  Where the packet is from
•  What/who causes your outbound traffic
•  What/who downloads files on your

computer
•  Whether or not your apps behave

For preserving system integrity

Conclusions and Future Work

User-intention based anomaly detection is a promising
approach; we’ve demonstrated its use in detecting
anomalies in

•  network traffic,
•  file system events,
•  apps,
•  keystrokes …

Future work:
 More investigation on white box anomaly detection

and analysis
 Android based mobile system integrity

Funding Sources:
•  NSF CAREER, ARO, DHS, VT ICTAS, S2ERC

Huijun Xiong

Current Ph.D. students

Personnel in Yao group

Kui Xu Hussain Almohri Johnny Shu Tony Zhang Karim Elish

Deian Stefan
(REU 08)

Chehai Wu
(MS 09)

Matt Banick
(BS 11)

Previous group members

