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ABSTRACT
Neural code translation is the task of converting source code from
one programming language to another. One of the main challenges
is the scarcity of parallel code data, which hinders the ability of
translation models to learn accurate cross-language alignments. In
this paper, we introduce MIRACLE, a semi-supervised approach
that improves code translation through synthesizing high-quality par-
allel code data and curriculum learning on code data with ascending
alignment levels. MIRACLE leverages static analysis and compi-
lation to generate synthetic parallel code datasets with enhanced
quality and alignment to address the challenge of data scarcity. We
evaluate the proposed method along with strong baselines including
instruction-tuned Large Language Models (LLMs) for code. Our
analysis reveals that LLMs pre-trained on open-source code data, re-
gardless of their size, suffer from the “shallow translation” problem.
This issue arises when translated code copies keywords, statements,
and even code blocks from the source language, leading to compila-
tion and runtime errors. Extensive experiments demonstrate that our
method significantly mitigates this issue, enhancing code translation
performance across multiple models in C++, Java, Python, and C.
Remarkably, MIRACLE outperforms code LLMs that are ten times
larger in size. MIRACLE also achieves up to a 43% improvement in
C code translation with fewer than 150 annotated examples.
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1 INTRODUCTION
Code translation, which involves converting source code written in
one programming language (PL) to another, is valuable for migrating
existing code to other languages, and can significantly reduce the
costs of legacy code maintenance and new platform development.
One line of work in code translation follows the “pre-training - fine-
tuning” approach [4, 13, 36, 42, 45]. However, pre-training tasks
such as masked language modeling (MLM) and auto-regressive lan-
guage modeling [10, 12, 14] focus on internal language consistency
by predicting missing or subsequent tokens, while code translation
demands a deeper semantic understanding of programming language
structures. This discrepancy can limit the effectiveness of traditional
pre-training in code translation. Large language models (LLMs)
have shown significant promise in code translation tasks due to their
extensive pre-training on diverse code corpora [34, 41]. However,
performance on code tasks varies significantly across LLMs, due
to several factors, including the quality of the training data, the in-
herent complexity of code translation and synthesis tasks, and the
lack of proper handling language-specific features such as method
overloading and annotation [28].

A critical component in improving code translation is therefore
the availability of high-quality parallel code data. Parallel code data
refers to pairs of code snippets from different programming lan-
guages that are functionally equivalent and bug-free. It is essential for
neural models to learn the correct alignment of data structures, APIs,
and grammatical rules across different languages. However, existing
parallel code data is limited in quantity and supported languages
[6, 9, 18, 25–27, 45, 46]. To reduce the dependency on parallel data,
a separate line of code translation works has explored unsupervised
learning. Established techniques from unsupervised neural machine
translation (NMT) [7, 8, 21], such as back-translation and denoising
auto-encoding, can be applied to code data effectively, achieving
promising performances on code translation [3, 5, 11, 16, 19, 35, 38].

Despite the potential to improve generalization, unsupervised
learning introduces significant noise, which is particularly harmful
to code generation tasks that require precision. A core challenge of
unsupervised methods is that they often fail to learn correct mappings
of syntax and data structures from one language to another [30], and
hence cannot understand functional equivalences between different
programming languages, resulting in “shallow translations” where
code appears superficially correct but doesn’t function as intended.
Figure 1 illustrates an example of shallow translation. Moreover,
weak translation may lead to cryptographic API, requiring further
identification of language-specific irrelevant elements [33].
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int sum(int a[], int n) { 
 unordered_map<int, int> cnt; 
 int ans = 0, pre_sum = 0; 
 for (int i = 0; i < n; i++) { 
     ans += (i * a[i]) - pre_sum; 
     pre_sum += a[i]; 
     if (cnt.find(a[i] - 1) != cnt.end()) 
         ans -= cnt[a[i] - 1]; 
     if (cnt.find(a[i] + 1) != cnt.end()) 
         ans += cnt[a[i] + 1]; 
     if (cnt.find(a[i]) != cnt.end()) { 
         cnt[a[i]]++; 
     } 
     else 
         cnt[a[i]] = 1; 
     } 
 return ans; 
}

public static int sum(int a[], int n) {
 Map<Integer,Integer> cnt = new HashMap<Integer,
Integer>();
 int ans = 0, pre_sum = 0;
 for (int i = 0; i < n; i++) {
     ans += (i * a[i]) - pre_sum;
     pre_sum += a[i];
     if (cnt.containsKey(a[i] - 1))

 ans -= cnt.get(a[i] - 1);
     if (cnt.containsKey(a[i] + 1))

 ans += cnt.get(a[i] + 1);
     if(cnt.containsKey(a[i])) {

 cnt.put(a[i], cnt.get(a[i]) + 1);
     }
     else {
         cnt.put(a[i], 1);
     }
 }
 return ans;
}

int sum(int a[], int n) {
 unordered_map<int, int> cnt;
 int ans = 0, pre_sum = 0;
 for (int i = 0; i < n; i++) {
     ans += (i * a[i]) - pre_sum;
     pre_sum += a[i];
     if (cnt.containsKey(a[i] - 1)) 
         ans -= cnt.get(a[i] - 1);
     if (cnt.containsKey(a[i] + 1)) 
         ans += cnt.get(a[i] + 1);
     if (cnt.containsKey(a[i])) {
         cnt.put(a[i], cnt.get(a[i]) + 1);
     }
     else {
         cnt.put(a[i], 1);
     }
 }
 return ans;
}

MIRACLE (C++)Input (Java) CodeLLama-7B (C++)

Figure 1: An example of the “shallow translation” problem, with the Java function shown in the first column as input, the C++
translations from baseline method CodeLLama-7B-Instruct, and our proposed method MIRACLE (with CodeT5+ of size 770M as
generator). The highlighted parts show that CodeLLama-7B-Instruct’s translation directly copied code blocks from the input Java
code, which contains non-existent methods or grammatically incorrect statements in the target language C++, while MIRACLE was
able to correctly convert them in the corresponding C++ grammar.

Considering the limitations of existing methods, we argue that it is
crucial to efficiently generate high-quality and well-aligned parallel
code data to effectively learn cross-lingual alignment. In this paper,
we propose a novel seMI-supeRvised pArallel Code aLignmEnt
approach, termed MIRACLE, that leverages static analysis and com-
pilation to generate synthetic parallel code datasets with enhanced
alignment. MIRACLE improves code translation through curriculum
learning on code datasets with ascending alignment levels. Static
analysis and compilation ensure the syntactical correctness and align-
ment of the synthetic parallel code in a cost-efficient way. Moreover,
the proposed alignment-ascending curriculum learning is robust to
data noise, effectively mitigating the shallow translation problem.
Our contributions can be summarized as follows:

(1) We propose MIRACLE, a novel semi-supervised code trans-
lation method that leverages static analysis and compilation
to generate synthetic parallel code with enhanced alignment
in a scalable way. The proposed method can be generalized to
multiple languages and various models with little overhead.

(2) We introduce alignment-ascending curriculum learning, where
the code translation model is trained on both synthetic paral-
lel code and annotated parallel code, considering the align-
ment level, noise level, and quantity of each type of data. We
demonstrate that curriculum learning improves the code trans-
lation model’s performance and enhances alignment across
different languages, resulting in more precise translations.

(3) Extensive experiments show that MIRACLE successfully
improves code translation performance by up to 30% on C++,
Java, and Python, outperforming state-of-the-art baselines
on translation between Python and C++ by 5.7%, C++ and
Python by 6%, and Python and Java by 8% in execution-
based evaluation (CA@1). Notably, our method improves
C translations by up to 43% with less than 150 annotated
training instances.

(4) We additionally evaluate several large language models and
their capability to translate code through instruction. We con-
duct case studies of both closed-sourced LLMs such as GPT-
3.5 [29] and GPT-4 [1], and open-source models such as
CodeLLama-Instruct [34] and LLama-2 [39]. Our experi-
ments showcase that open-source LLMs struggle with code
involving built-in data structures or bitwise operations.

2 RELATED WORK
Parallel Code Data. Parallel code data refers to code pairs from dif-
ferent programming languages that are functionally equivalent and
bug-free. One type of existing datasets is characterized by relatively
high alignment but is limited in size and supported languages. For ex-
ample, CodeXGLUE [25] constructed a Java – C# translation dataset
by matching function names from open-source repositories. MuST-
PT [46] introduced a program translation dataset CoST, with snippet-
level alignment that supports 7 programming languages. CoST was
collected from the coding tutorial website GeeksforGeeks1, where
each coding problem is provided with solutions in up to 7 languages,
with each in similar structure and comments. AVATAR [6] only
supports the translation between Java and Python. Another type of
datasets is usually significantly larger in size and supports a wider
range of languages, but the alignment quality is low. They are usually
collected from competitive online code judgments. Given a coding
problem, users can submit their own solutions in various supported
languages and get judged based on online tests. The user-contributed
solutions to the same problems are collected as parallel code in
different languages. For example, Google Code Jam and Project
CodeNet [31] were both collected in this manner. However, due to
the diverse backgrounds and the large number of users, the solutions
for the same problem have wide discrepancies in distribution across
different languages, which lowers the quality of the alignment.

1https://www.geeksforgeeks.org/
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{...}static void

Static Analysis

Java
static void show(int [ ] pdata){
   StringBuffer stb = new StringBuffer( )
;

   stb.append ( pdata [ 0 ] ) ;
   for ( int a = 1; a < pdata.length; a

++ ) {
     stb.append("" + pdata[a]);
   }

   System.out.println(stb.toString());
}

Function_dict

function_name show
return_type int
parameters string

C++
int show(string pdata) {
   string stb = "" ;

   stb += pdata [ 0 ];
   for ( int a = 1; a < pdata.size( );
a++) {

     stb += "" + pdata[a];
   }
   cout << stb << endl;

 }

C++
void show(vector<int>& pdata) {
   string stb = "" ;

   stb += pdata [ 0 ];
   for ( int a = 1; a < pdata.size( );
a++) {

     stb += "" + pdata[a];
   }
   cout << stb << endl;

 }

Function_dict

function_name show
return_type void
parameters vector<int>

Synthetic Parallel Code Alignment Ascending
Curriculum

Synthetic Parallel Data
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Figure 2: Overview of MIRACLE for Code Translation. MIRACLE utilizes a two-step process to generate high-quality translation
hypotheses from monolingual code inputs. First, the generator produces multiple translation hypotheses using tempered sampling.
Next, the selector applies static analysis and compilation techniques to select the most promising hypotheses. By employing various
selection criteria, MIRACLE generates synthetic parallel code datasets with varying alignment levels and quality. These synthetic
datasets, along with annotated parallel code datasets, are organized into a curriculum, where the alignment and quality gradually
improve. The proposed curriculum-based approach enhances code translation performance.

Neural Code Translation. Recent advances in machine learning,
especially in self-supervised learning techniques, have benefited a
wide range of tasks [20, 23, 24, 40]. Neural networks were applied
for application programming interface (API) completion tasks where
next code sequence are given to predict the following API method
[43, 44]. Some techniques from NLP were transferred to program-
ming languages and have achieved great success. Similar to BERT
[10], CodeBERT [12] is a code language model pre-trained on Code-
SearchNet [17] with Masked Language Modeling (MLM). PLBART
[4] is pre-trained the same way as BART [22], with Denoising Auto-
Encoding (DAE) [21] on GitHub data. Although CodeBERT and
PLBART are pre-trained on code, they model code the same way as
natural language sequences without considering code-specific fea-
tures. Inspired by T5 [32], CodeT5 [42] and CodeT5+ [41] are both
pre-trained on CodeSearchNet but with an identifier-aware objective
to align more with programming language distributions. CodeT5+
[41] is a family of encoder-decoder large language models (LLMs)
for code understanding and generation tasks. These models use gen-
eral pre-training to gain programming language intelligence, without
optimizing for any specific tasks. They require fine-tuning on task-
specific data to perform downstream tasks. TransCoder [35] is an
unsupervised code translation model that relies on back-translation
to generate pseudo-parallel code data during training. However,
back-translation introduces noisy code into the training process, com-
promising the model’s ability to generate high-quality translations.
TransCoder-ST [37] improves TransCoder by adding automated unit
tests to filter out invalid translations and reduce noise from the back-
translation process. However, obtaining unit tests for different lan-
guages is expensive, and running unit tests is unscalable for a large
amount of code data. MuST-PT [46] leverages snippet-level DAE
and translations for pre-training before fine-tuning on program-level
data, which improves code translation performance. Nevertheless,

MuST-PT is less scalable, as it relies solely on a limited amount
of finely aligned parallel code for training without utilizing widely
available non-parallel code. Recent advancements in large language
models (LLMs) such as GPT-3.5 [29] and GPT-4 [1], have shown
significantly improved capabilities of code translation. These models
are not only capable of generating high-quality translations between
programming languages but also excel at following instructions,
which enhances their usability in various applications. CodeLLama
[34] is a family of open-source large language models for code gen-
eration and infilling. The models are based on Llama 2 [39] and
reaches state-of-the-art performance on several code benchmarks.
The instruction-tuned CodeLLama can perform code translation
tasks through prompting.

3 METHOD
Code translation models rely on large amounts of parallel data to
achieve good performance. Semi-supervised methods generate syn-
thetic parallel data from monolingual data sources but often struggle
to maintain alignment quality between source and target languages.
To address the data scarcity challenge, our work aims to efficiently
generate synthetic parallel code with enhanced cross-lingual align-
ment through alignment-ascending curriculum learning. Our ap-
proach, MIRACLE, focuses on function-level code translation, as
functions are the building blocks of programs. Figure 2 presents an
overview of the proposed method.

3.1 Parallel Code Data Generation
MIRACLE consists of two modules, a hypotheses generator 𝑓𝐺 ,
and a selector 𝑓𝐷 . The hypotheses generator 𝑓𝐺 is sequence-to-
sequence model that takes as input a code snippet 𝑥 from the source
language 𝑠 and generates a set of hypothetical translations Yℎ =

{𝑦 (1)
ℎ
, 𝑦

(2)
ℎ
, .., 𝑦

(𝑀 )
ℎ

} in the target language 𝑡 . Here, Yℎ consists of
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𝑀 translations (hypotheses) for the same input code snippet 𝑥 . The
generator 𝑓𝐺 is trained on a limited amount of parallel code data 𝐷𝐿
and learns to generate a large number of hypotheses for monolingual
code data 𝐷𝑈 . The selector 𝑓𝐷 comprises a set of 𝐾 filtering criteria
F = {𝐹𝑘 }𝐾𝑘=1 where Ỹℎ,𝑘 = 𝐹𝑘 (Yℎ) takes Yℎ as input and outputs

the subset of hypotheses Ỹℎ,𝑘 ⊂ Yℎ that passes the criterion 𝐹𝑘 .

3.1.1 Hypotheses Generation. The hypotheses generator 𝑓𝐺 is
initialized by training on a limited amount of parallel code data, to
enable 𝑓𝐺 with the ability to translate code from the source language
𝑠 to the target language 𝑡 . To further improve 𝑓𝐺 ’s translation ca-
pability, we leverage the snippet training method from [46], which
matches code comments in parallel programs to get snippet-level
parallel training data. A snippet usually consists of several lines of
code and is not necessarily a complete function. The trained 𝑓𝐺 then
generates hypotheses for a large amount of monolingual code.
Snippet Training. We use two small annotated parallel code datasets,
D𝐿𝑠 and D𝐿 , with different levels of alignment to train 𝑓𝐺 . The
parallel code data aligned at snippet-level is denoted as D𝐿𝑠 =

{(𝑥,𝑦) (𝑙𝑠 ) } |D𝐿𝑠 |
𝑙𝑠=1 , and the function-level parallel data is denoted as

D𝐿 = {(𝑥,𝑦) (𝑙 ) } |D𝐿 |
𝑙=1 . D𝐿𝑠 can be constructed from D𝐿 by match-

ing code comments from the parallel programs [46]. We first train 𝑓𝐺
on D𝐿𝑠 , and then continue the training on D𝐿 . We refer to this step
as snippet training, which helps the generator to learn fine-grained
alignment between different languages and substantially improves
𝑓𝐺 ’s ability to generate valid hypotheses with better alignment to the
input code and with sufficient initial quality.
Tempered Sampling. Let D𝑈 = {𝑥 (𝑖 ) } |D𝑈 |

𝑖=1 be a monolingual
dataset in source language 𝑠, where each 𝑥 (𝑖 ) is a function-level
code block. With D𝑈 as input, we can generate a set of translation
hypotheses in the target language 𝑡 with the trained 𝑓𝐺 . To increase
the diversity of the hypotheses and improve coverage for different
possible translations, we employ tempered sampling to acquire 𝑀
different hypotheses for each input code. Tempered sampling makes
use of a tuned scaled softmax to control the degree of randomness
(temperature) in the sampling process [2, 15]. We denote the hy-
potheses set as H = {Yℎ (1) ,Yℎ (2) , . . . ,Yℎ (𝑖 ) , . . . ,Yℎ |D𝑈 | }, where
Yℎ (𝑖 ) = {𝑦ℎ (1) , 𝑦ℎ (2) , .., 𝑦ℎ (𝑀 ) } is a set of different translations for
𝑥𝑖 in target language 𝑡 .

3.1.2 Hypotheses Selection. The selector 𝑓𝐷 takes H as input
and produces H̃ = {Ỹ (𝑖 )

ℎ
} |D𝑈 |
𝑖=1 , in which Ỹ (𝑖 )

ℎ
is the subset of

Y (𝑖 )
ℎ

that passes the selection criteria F , i.e., Ỹ (𝑖 )
ℎ

= F (Y (𝑖 )
ℎ

).
If Ỹ (𝑖 )

ℎ
contains more than one hypothesis, only one is kept, as

our preliminary experiments confirm that keeping more than one
hypothesis for each input does not yield improved performance 2.
We pair all the 𝑦 (𝑖 )

ℎ
with the input corresponding input code 𝑥 (𝑖 ) to

acquire pseudo parallel dataset D𝑆 = {(𝑥,𝑦ℎ) (𝑙 ) }
|D𝑆 |
𝑙=1 . In practice,

we rely on cross-lingual static code analysis and compilation as
selection criteria F for the hypotheses.
Cross-Lingual Static Analysis. To ensure that the selected hy-
potheses have high alignment quality with the input code, we use
cross-lingual static analysis to compare the key information of both

2If Ỹ (𝑖 )
ℎ

is empty, it will be discarded.

the input code and all the hypotheses. Static code analysis is a tech-
nique used to analyze source code without executing the program.
One way to perform static code analysis is through the use of an
abstract syntax tree (AST), a tree-like data structure that represents
the structure of a program’s source code. AST captures the high-
level structure of the code and the relationships between its elements,
enabling a deeper understanding of the code beyond the sequence
level. Figure 2 shows an example AST generated from a Java func-
tion. Specifically, we compare the number of functions, and after
matching each pair of functions from the output with the input, we
check whether the return types are equivalent, and if the parameter
lists match in terms of the number of parameters and the type of each
parameter. For non-typed languages such as Python, we skip the type
part and only compare the number of functions and the parameter
list of each function. Passing the cross-lingual static analysis is a
strong indicator of the alignment quality of the hypotheses to the
input, which helps in selecting the best hypotheses.
Compilation Filtering. We additionally leverage compilation to
filter out hypotheses that may contain errors. Specifically, we com-
pile the generated code using the target compiler and check for any
compilation errors. Any hypothesis that fails to compile is discarded.
This step further ensures that selected hypotheses are syntactically
correct and can be compiled successfully.

3.2 Alignment-Ascending Curriculum Learning
By pairing the hypotheses with their corresponding inputs, we obtain
multiple synthetic parallel code datasets at different stages of the
generation process. Without the selector, the generation is reduced
to plain direct translation. We denote the unfiltered synthetic parallel
data from the unfiltered hypotheses, as DT (Direct Translation)
data. Similarly, we denote the synthetic parallel data from cross-
lingual static analysis and compilation filtering as STAT and COMP,
respectively. In addition, we denote the subset of hypotheses that
pass both criteria, static analysis and compilation, as AND data. We
adopt a curriculum learning approach to train our code translation
model, strategically leveraging the quality of the data at different
stages.

Our curriculum consists of multiple training phases, progressively
incorporating different types of data. We first train with the unfil-
tered synthetic parallel data, allowing the model to grasp the basic
translation patterns. Next, we introduce the cross-lingual static anal-
ysis filtered data, which helps refine the model’s understanding of
language-specific code idioms and improve translation accuracy.
Subsequently, we integrate the compilation filtered data, which fur-
ther enhances the model’s ability to generate syntactically correct
translations. The curriculum then advances to utilize the intersection
of both filtered datasets, combining the benefits of both data sources.
We then introduce snippet-level annotated data to enhance transla-
tion performance in specific code segments. Finally, we conclude
by training with function-level annotated data, enabling the model
to capture higher-level structural patterns and produce more coher-
ent translations. By following this carefully designed curriculum,
MIRACLE not only benefits from exposure to a diverse range of
training data but also progressively refines its translation quality and
alignment, leading to improved performance and robustness.
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4 EXPERIMENTS
4.1 Datasets
We make use of the annotated COST dataset from [46] to support
snippet training and execution-based evaluation. The COST dataset
contains parallel code aligned at both program and snippet levels.
To support execution-based evaluation, we execute all programs
in COST and remove the ones that throw run-time errors and the
ones with empty execution output. We refer to the resulting dataset
as ECOST (Execution-based COST). ECOST has approximately
1, 000 function-level training instances for C++, Java, and Python,
and 150 for C. We employ a train/validation/test split ratio of ap-
proximately 70:5:25. To support snippet and function-level training,
we extract the functions from ECOST through AST parsing3 to get
both snippet-level and function-level parallel data, which we refer to
as ECOST-snippet and ECOST-function.
Preprocessing. For all the program data, we first remove all the
comments, docstrings, and empty lines. New lines are replaced
with special token NEW_LINE. For pre-tokenization, Python is pre-
tokenized with a TreeSitter-based tokenizer from TransCoder[35],
for better handling of indentations. Other languages are not pre-
tokenized. When running experiments, the data will be tokenized
again using the corresponding tokenizer of each model.
Function Info Extraction. We rely on AST parsing to extract func-
tion information from programs, which are further used for static
analysis and execution-based evaluation. An AST is a tree-like data
structure that represents the structure of a program’s source code. It
captures the high-level structure of the code and the relationships
between its elements, enabling a deeper understanding of the code
beyond the sequence level. To create an AST, the source code is first
parsed to identify its syntactic elements, such as keywords, operators,
and identifiers. The parser then constructs the AST by assigning each
syntactic element to a node in the tree. An AST consists of terminal
and non-terminal nodes. Terminal nodes are leaf nodes in AST and
are part of the source code. Non-terminal nodes are not part of the
source code. With the help of AST, we can extract function-related
information by matching the corresponding non-terminal nodes in
that language, such as method_declaration, method_invocation,
formal_parameters etc. One of the most widely used open-source
AST parsing tools is TreeSitter. It supports most of the commonly
used programming languages. Figure 3 shows an example of a Java
program and its AST (parsed by TreeSitter). The blue nodes are
non-terminal and the purple nodes are terminal.
Execution-Based Evaluation ECOST test set is used for all the
evaluations. To evaluate the quality of the generated hypotheses,
we employ an execution-based evaluation strategy. By inserting the
generated hypothesis of an input function into the program_shell
of the ground truth program, we execute the modified program and
compare its output against the original output. This process allows
us to verify whether the hypothesis successfully passes the built-in
test cases, thus evaluating its correctness and suitability. However,
the function names in the generated hypotheses might not match the

3https://tree-sitter.github.io/tree-sitter/

function calls in program_shell, causing execution errors. There-
fore, through function information extraction, we replace the func-
tion name of the hypotheses with the corresponding ground truth
function name before each evaluation.

4.2 Synthetic Parallel Code Generation
We use the CODENET dataset [31] as the monolingual code data
(D𝑈 ) for parallel code generation. CODENET is a large-scale dataset
containing 13M programs spanning 55 languages. The programs
in CODENET originate from code submissions to online judge of
programming problems. We select the “Accepted” submissions (i.e.,
submissions that pass the online judge) in 4 languages, C++, Java,
Python, and C, from around 1, 600 problems. After quality filtering,
we get approximately 87, 000 examples. We experiment with three
different models as the generator model, PLBART [4], CodeT5 [42]
and CodeT5+ [41]. The monolingual CODENET data are used as
inputs to the generators to obtain the hypotheses through tempered
sampling with a temperature of 0.5 and sample size 𝑀 set to 10.
We then get the synthetic parallel code through selection by static
analysis and compilation (F ).

4.3 Baselines and Evaluation Metrics
We compare against advanced code translation models of different
sizes. PLBART (139M) [4], CodeT5 (220M) [42] and CodeT5+
(770M) [41] are programming language models pre-trained with
self-supervised learning techniques on large-scale open-source code
datasets. TransCoder (110M) [35] and TransCoder-ST (110M) [37]
are unsupervised code translation models. We also compare our
method with prompting an open-source instruction-tuned Code
Large Language Model (LLM), CodeLLama-7B-Instruct [34].After
generating the synthetic parallel code, we train code translation
models using the generated data and evaluate their performances.
PLBART, CodeT5, and CodeT5+ require fine-tuning to perform
code translation, therefore they are fine-tuned on ECOST with both
snippet-level and function-level data. TransCoder and TransCoder-
ST do not need fine-tuning as they are unsupervised methods. CodeL-
Lama performs the translation task through prompting. All models
are evaluated on ECOST test set.
Computation Accuracy (CA) [35] is an execution-based evaluation
metric for synthetic code that measures if the hypothesis has the
same execution output as the reference. We use CA@1 for all the
evaluations.

4.4 Implementation Details
All MIRACLE models are trained with a batch size of 16 for 10
epochs, with a learning rate of 5𝑒 − 5. Experiments are performed on
16 NVIDIA A100 GPUs with 80G memory on each. For tempered
sampling, we use a sample size of 10 with a fixed temperature of 0.5.
For evaluation, we use beam search with a beam size of 5. We use a
max sequence length of 400 tokens for both the inputs and outputs.

5 RESULTS AND ANALYSIS
We evaluate three MIRACLE variations with varying model sizes,
MIRACLE-PLBART, MIRACLE-CodeT5 and MIRACLE-CodeT5+,
by performing parallel code generation with PLBART, CodeT5, and
CodeT5+ (770M) as generators and curriculum learning with their
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Figure 3: Illustration of function info extraction through AST parsing. Given an input program, MIRACLE first generates its
corresponding AST and then extracts function-related information from AST into program_dict. The top middle tree shows an
example of AST. After the functions are extracted, the leftover part of the program is called program_shell, which can later be used
for execution-based evaluation.

PLBART Number of Pairs Selection Rate
Selector C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C
Direct Translation (DT) 47540 63637 49550 37233 22919 39231 1 1 1 1 1 1
Static Analysis (STAT) 25211 58157 14945 31228 13059 33882 0.53 0.91 0.30 0.84 0.57 0.86
Compilation (COMP) 15258 36224 1893 13525 1562 11088 0.32 0.57 0.04 0.36 0.07 0.28
SA & Compilation (AND) 9278 34733 1200 12104 1313 10730 0.20 0.55 0.02 0.33 0.06 0.27

Table 1: Statistics of MIRACLE-function, with PLBART [4] as generator. SA & Compilation refers to the intersection of the Static
Analysis and Compilation selections.

Figure 4: Synthetic parallel code examples, with PLBART [4] as generator. The synthetic parallel data demonstrates great alignment
quality, with minor noise in some cases.

generated data, respectively. The generated parallel code data is re-
ferred to as MIRACLE-function. We focus on two aspects, generated
data quality and improvements in code translation performance.

5.1 Quality of the Synthetic Parallel Code
Statistics of MIRACLE-function. With 86, 972 monolingual code
as input, we generate approximately 1.5 million synthetic parallel
code pairs in 6 language pairs from PLBART, CodeT5, and CodeT5+.
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Model Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py C++ – C Java – C Py – C C – C++ C –Java C – Py

PLBART 25.54 24.4 27.15 23.87 32.23 32.33 2.6 0 1.56 5.19 0 14.06

CodeT5 37.63 19.28 41.13 23.87 20.78 24.77 66.23 47.95 25 64.94 39.73 28.12

CodeT5+ 63.71 54.22 62.1 50.15 32.83 36.25 84.42 61.64 46.88 84.42 38.36 29.69

Trancoder 49.73 25.60 40.86 22.36 41.87 46.22 - - - - - -

Trancoder-ST 51.08 36.14 44.09 35.35 43.98 51.96 - - - - - -

CodeLLama-7B 47.04 49.7 30.11 46.53 38.86 42.6 62.34 45.21 51.56 58.44 42.47 34.38

MIRACLE-PLBART 41.94 35.24 40.05 33.84 38.55 41.09 33.77 28.77 17.19 48.05 23.29 28.12

MIRACLE-CodeT5 51.08 41.87 49.19 43.2 50 49.55 68.83 56.16 31.25 64.94 45.21 51.56
MIRACLE-CodeT5+ 69.35 61.75 62.37 57.1 41.87 41.39 85.71 73.97 45.31 84.42 43.84 31.25

Table 2: Performance comparison of three implementations of MIRACLE with PLBART, CodeT5 and CodeT5+ against baseline
approaches. The metric used for comparison is Computation Accuracy (CA@1). The Transcoder models do not support translation
with C language, therefore the results are not included.

Curriculum Data Volume Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py

Function 3,326 0.81 4.52 1.88 3.63 16.87 16.62
Snippet+Function 35,144 25.54 24.4 27.15 23.87 32.23 32.33
AND+Snippet+Function 104,502 34.68 34.64 33.06 32.93 36.45 37.16
DT+Snippet+Function 295,254 38.98 34.94 37.1 30.21 35.54 39.58
AND+COMP+STAT+DT+Snippet+Function 551,286 38.98 32.23 37.63 33.84 35.84 39.58

DT+STAT+COMP+AND+Snippet+Function (MIRACLE) 551,286 41.94 35.24 40.05 33.84 38.55 41.09

Table 3: Comparison of variations of curriculum. Data Volume refers to the number of parallel codes. The base model is PLBART. All
results are measured in Computation Accuracy. Results demonstrate the effectiveness of alignment-enhancing curriculum learning.

Table 1 shows the statistics of the synthetic parallel code data gen-
erated by PLBART as an example. Note that the datasets resulting
from static analysis and compilation are not subsets of direct transla-
tion, because for direct translation we randomly pick a hypothesis
from the 10 sampled hypotheses, and for static analysis and compi-
lation we select the hypothesis from the ones that pass the selection
criteria. From the selection rate, we can observe that static analy-
sis is the most lenient to Python, as it is a weakly typed language.
Due to the generator being trained with less than 150 examples on
C, compilation has the lowest selection rate on this programming
language.
Qualitative Analysis. We further perform qualitative analysis and
manually inspect samples of the generated data. Figure 4 illustrates
four examples from the synthetic parallel code, with two in Java
– C++, and two in Python – C++. The Java and Python codes are
the monolingual input from CODENET, and the C++ codes are the
synthetic codes. The generated code snippets are in good alignment
with their corresponding inputs, with correct mapping of types, data
structures, and syntax. Note that the synthetic codes still contain
some noise. However, Table 2 results indicate that it does not impede
the effectiveness of the synthetic code in improving code translation
performance.

5.2 Code Translation Performance
To evaluate the improvement in translation performance using the
generated data, we performed parallel code generation with three
models, PLBART, CodeT5, and CodeT5+. We then trained them
using their respective generated data. We compared their perfor-
mances with and without the generated data. We also compared

them against several state-of-the-art baselines, including unsuper-
vised code translation models TransCoder and TransCoder-ST and
open-source Code LLM, CodeLLama-7B-Instruct.
Comparison with Baseline Models. Table 2 shows the Compu-
tation Accuracy performance on C++, Java, Python, and C of the
baseline models and the MIRACLE models. MIRACLE-CodeT5 and
MIRACLE-CodeT5+ outperforms the best open-source models’ per-
formance on all of the language pairs except for Java – Python and
Python – C, surpassing LLMs of tens of times the size (MIRACLE-
CodeT5 has 220M parameters, MIRACLE-CodeT5+ has 770M pa-
rameters, while CodeLLama-7B-Instruct has 7B parameters). Specif-
ically, MIRACLE-CodeT5+ outperforms CodeLLama-7B o C++ –
Java by 32%. The experimental results demonstrate that smaller
open-source models trained on high-quality synthetic parallel data
can achieve comparable code translation performance of LLMs of
much larger size and extensive pre-training.

Notably, all three MIRACLE models beats their corresponding
generator models on almost all of the language pairs. Compared to
PLBART, MIRACLE-PLBART has a 16% improvement on Java –
C++; MIRACLE-CodeT5 outperforms CodeT5 on C++ – Python
with a 29% margin; MIRACLE-CodeT5+ improves CodeT5+’s per-
formance on Python – C++ by 7%.
Performance on Low-resource Languages. In ECOST, C only
has less than 150 parallel code pairs with each language, making it
suitable for evaluating in more challenging low-resource language
settings. As shown in Table 1, the compilation rate is the lowest when
C is involved, as the generator is not able to generate high-quality
data when the training data of C is significantly less. Table 2 shows
the performance of the three MIRACLE variants and their respective
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Figure 5: Comparison of models of similar sizes, including MIRACLE-CodeT5, CodeT5 and Transcoder-ST. In all three examples, the
baselines’ results exhibit the "shallow translation" problem, where code snippets are directly copied or translated token by token from
the source language, causing compilation and run-time errors in the target language. MIRACLE’s translation shows its strong ability
to correctly align the syntax and APIs across different languages.

generators. For PLBART, MIRACLE improves Computation Accu-
racy (CA@1) by up to 43% on C – C++. Results demonstrate that the
augmentation of parallel code generation works well in low-resource
language settings, where the generator’s performance is weak. For
CodeT5, the improvement in CA@1 is up to 23% on C – Python.
For CodeT5+, the improvement is up to 12% on Java – C. We also
observed that larger models tend to perform better with low resource
language, as the improvement margin of MIRACLE compared to
the generator model decreases as the model sizes get larger.
Analysis of Alignment-Ascending Curriculum Table 4 presents
the datasets employed in curriculum learning and their acquisition
methods. To assess the impact of the quality, volume, and order
of the datasets in the alignment-ascending curriculum, we train
models with different variations of the curriculum and compare
their Computation Accuracy, as detailed in Table 3. Initially, a base
model is trained solely on the annotated dataset ECOST-function,
where its modest size yields limited performances. Incorporating
ECOST-snippet markedly enhances model performance, underscor-
ing the value of snippet-based training. Adding the high-quality

Data Type Volume Source
DT Synthetic 260,110 Direct Translation
STAT Synthetic 176,482 Static Analysis
COMP Synthetic 79,550 Compilation
AND Synthetic 69,358 Static Analysis & Compilation
Snippet Annotated 31,818 ECoST
Function Annotated 3,326 ECoST

Table 4: Datasets for Alignment-Ascending Curriculum Learn-
ing. Volume refers to the number of parallel codes.

synthetic data, AND, further improves the performance. Similarly,
the integration of unfiltered noisy data, DT, also boosts the per-
formance. However, neither AND nor DT alone reaches the effi-
cacy of MIRACLE, highlighting the critical role of both data qual-
ity and volume. Reversing the order of the alignment-ascending
curriculum to AND+COMP+STAT+DT+Snippet+Function causes
the performance to drop significantly compared to MIRACLE, em-
phasizing the importance of the order of the curriculum. Interest-
ingly, this inverted curriculum aligns closely in performance with
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Input (C++) MIRACLE (Python) Llama-2-13b (Python) Llama-2-7b (Python)
int numSquares(int n) { 

    vector<int> visited(n + 1, 0); 

    queue<pair<int, int>> q; 

    int ans = INT_MAX; 

    q.push({n, 0}); 

    visited[n] = 1;  

    while (!q.empty()) { 

        pair<int, int> p; 

        p = q.front(); 

        q.pop(); 

        if (p.first == 0) 

            ans = min(ans, p.second); 

        for (int i = 1; i * i <= p.first; i++) { 

            int path = p.first - (i * i); 

            if (path >= 0 && (!visited[path] || path == 0)) { 

                visited[path] = 1; 

                q.push({path, p.second + 1}); 

            } 

        } 

    } 

    return ans; 

} 

def numSquares(n):

    visited = [0] * (n + 1)

    q = []

    ans = 10**9

    q.append([n, 0])

    visited[n] = 1

    while len(q):

        p = q[0]

        q.pop(0)

        if p[0] == 0:

            ans = min(ans, p[1])

        for i in range(1, int(p[0]**0.5) + 1):

            path = p[0] - (i * i)

            if path >= 0 and (not visited[path] or path 

== 0):

                visited[path] = 1

                q.append([path, p[1] + 1])

    return ans

def num_squares(n): 

   queue = deque([(n, 0)]) 

   visited = [[0] * (n + 1) for _ in range(n + 

1)] 

   ans = float('inf') 

   

   while queue:  

       p = queue.popleft()  

       if visited[p.first]: 

           continue  

       visited[p.first] = 1

        

       for i in range(1, min(p.first, n)): 

           path = p.first - (i * i) 

           if path < 0 or visited[path]: 

               continue 

           queue.append((path, p.second + 

1)) 

       ans = min(ans, p.second) 

   return ans 

def num_squares(n: int) -> int: 

   visited = [0] * (n + 1) 

   q = deque([{0, 1}]) 

   while not q.empty(): 

       pair = q.popleft() 

       ans = min(ans, pair[1] + 1) 

       for i in range(1, pair[0] // i + 1): 

           path = pair[0] - (i * i) 

           if path >= 0 and (not visited[path] or path == 

0): 

               visited[path] = True 

               q.append((path, pair[1] + 1)) 

   return ans 

Figure 6: Examples of wrong translations from Llama-2 models that try to mimic the input code while translating from C++ to Python.
In the Llama-2-13b translation, p.first and p.second do not work in Python similarly as in Java code. For Llama-2-7b, p[0] and p[1]
does not work for set elements. Also, deque in Python does not have an empty method whereas it works for Java.

Input (C++) MIRACLE (Python) Llama-2-13b (Python)
void swap(int& a, int& b)  
{  
    a = (a & b) + (a | b);  
    b = a + (~b) + 1;  
    a = a + (~b) + 1;  
    cout << "After swapping: 
a = " << a << ", b = " << b;  
} 

def swap(a, b):
    a = (a & b) + (a | b)
    b = a + (~b) + 1
    a = a + (~b) + 1
    print("After swapping: a = ", 
a, ", b = ", b)

def swap(a, b): 
   # Perform the swap 
   temp = (a & b) + (a | b) 
   b = a + (~b) + 1 
   a = temp + (~b) + 1 
   # Print the results 
   print("After swapping: a 
=", a, ", b =", b) 

Figure 7: An example of wrong translation from Llama-2-13b for
C++ to Python code translation. The bitwise swap operation does
not need any extra temporary variable but the model introduced
a temp variable instead of using a. This translation generates
wrong output.

DT+Snippet+Function, likely due to the larger volume of the DT
dataset overpowering the effect of the previous datasets.
Qualitative Analysis of Similar Size Models. To compare the per-
formance of models of similar sizes, in Figure 5 we show examples
translations of MIRACLE-CodeT5 (220M) with two other base-
lines, TransCoder-ST (110M) and CodeT5 (220M). We also include
their execution outputs given the same input code. The first col-
umn corresponds to the code used as input in the source language,
and the last column corresponds to the ground truth translation in
the target language. All examples are from the ECOST test set. In
the first two examples, we observe that both baselines demonstrate
the “shallow translation” problem. In the C++ – Python example,
both TransCoder-ST and CodeT5 directly copy from the input code.
While min_element is a valid built-in function defined in header
<algorithm> in C++, it does not exist in Python, resulting in com-
pilation errors for both baselines. TransCoder-ST also exhibits an
inability to translate multiple functions at once. In the Python – Java
example, both TransCoder-ST and CodeT5 translate the keyword
"not" in Python to "!" in Java. However, the operator "!" cannot

be used when the operand is an integer. By translating at the token
level, these baselines fail to take context into consideration, causing
run-time errors. In both cases, MIRACLE-CodeT5 can translate the
function calls and statements from the source language to the target
language correctly. In the Java – Python example, both baselines
fail at translating a complex for loop, while MIRACLE correctly
translates this in a different way from the ground truth, showing a
strong capability of understanding the input code and mapping it
into a different language.

5.3 LLM Code Translation Capabilities
In addition to our existing experiments, we assess the code transla-
tion capability of GPT-3.5, GPT-4 and two more LLMs, Llama-2-13b
and Llama-2-7b, through prompts with 18 function-level instances
from the ECoST test set. We manually analyze several different lan-
guage pairs, including C++-Python, Java-Python, C++-C, and Java-
C. With the 18 instances tested, GPT-3.5 and GPT-4 both achieved
perfect accuracy, while Llama-2-13b and Llama-2-7b failed to cor-
rectly translate 6 and 5 instances, achieving accuracy of 66.67%
and 72.22%, respectively. Notably, our MIRACLE-CodeT5+ also
achieved 100% accuracy for those cases, demonstrating the efficacy
of the proposed approach.

In Figure 6, both Llama-2 models failed to translate from C++
to Python. Both models mimicked the input code in the translation.
Llama-2-13b called p.first and p.second in the translation, which
causes an AttributeError in Python (‘tuple’ object has no attribute
‘first’). Llama-2-7b initialized q as a set but tried to access it like
a tuple or list which throws an error stating the set object is not
subscriptable in Python. Additionally, it tried to check whether the
queue is empty by calling an empty function mimicking the input
code, however, deque does not have an empty method. Another type
of error that results from the tendency to replicate the input code
includes defining variable names without ensuring the name is not
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Input (Java) MIRACLE (Python) Llama-2-13b (Python) Llama-2-7b (Python)
import java.util.Stack; 
public class Main { 
    public static int countMinReversals(String expr) { 
        int len = expr.length(); 
        if (len % 2 != 0) 
            return -1; 
        Stack<Character> s = new Stack<>(); 
        for (int i = 0; i < len; i++) { 
            char c = expr.charAt(i); 
            if (c == '}' && !s.empty()) { 
                if (s.peek() == '{') 
                    s.pop(); 
                else 
                    s.push(c); 
            } else 
                s.push(c); 
        } 
        int red_len = s.size(); 
        int n = 0; 
        while (!s.empty() && s.peek() == '{') { 
            s.pop(); 
            n++; 
        }  
        return (red_len / 2 + n % 2); 
    } 

def countMinReversals(expr):
    length = len(expr)
    if length % 2 != 0:
        return -1
    
    s = []
    for i in range(length):
        c = expr[i]
        if c == '}' and len(s) > 0:
            if s[-1] == '{':
                s.pop(-1)
            else:
                s.append(c)
        else:
            s.append(c)
    
    red_len = len(s)
    n = 0
    while len(s) > 0 and s[-1] == '{':
        s.pop(-1)
        n += 1

    return (red_len // 2) + (n % 2)

def count_min_reversals(expr): 
   if len(expr) % 2 != 0: 
       return -1 
   stack = [] 
   for i in range(len(expr)): 
       char = expr[i] 
       if char == '}': 
           if not stack: 
               break 
           top = stack.pop() 
           if top == '{': 
               continue 
           elif top == '}': 
               stack.push(top) 
       else: 
           stack.push(char) 
   red_len = len(stack) 
   n = 0 
   while not stack and stack.pop(): 
       n += 1 

   return (red_len // 2 + n % 2)

def count_min_reversals(expr):  
    len = len(expr)  
    if not (len % 2) == 0:  
        return -1  
    stack = []    
    for i in range(len):   
        if expr[i] == '}':  
            if not stack:  
                continue  
            if stack.pop() == '{':  
                stack.push(expr[i])  
            else:  
                stack.push(expr[i])   
        else:  
            stack.append(expr[i])  
    red_len=len(stack) 
    n=0 
    while stack and stack[-1]=='{': 
        stack.pop() 
        n+=1  

    return (red_len/2) + (n%2)

Figure 8: An example of wrong translation from Llama-2 models for Java to Python code translation. Both of the models mimicked the
input code by calling push for list. Llama-2-7b declared a variable named ‘len’ and called the built-in function len that causes the
UnboundLocalError.

as same as a built-in function name in the target language. We found
such a translation from Llama-2-7b that throws UnboundLocalError.
Figure 8 demonstrates one example, where both of the Llama-2
models replicated the Java input code to the Python translation. Ad-
ditionally, Llama-2-7b defined a variable name as len while calling
the built-in function ‘len’ in the same line. This causes the Unbound-
LocalError as mentioned earlier. A similar type of error is seen in
the translation when a local variable is not defined earlier. In Figure
7, the input C++ code swaps values of two variables through bitwise
operations without using a third temporary variable. While other
models translated to Python code correctly, Llama-2-13b introduced
a third variable temp. This might happen in the context of a swap
operation that utilizes a temporary variable. However, bitwise swap
operation does not need such a variable and therefore, the translated
code generates a wrong output. Nonetheless, the translations are
error-free when the input codes are straightforward with regular
variable declarations, arithmetic operations, conditional statements,
and loops.

6 THREATS TO VALIDITY
Despite the promising results and contributions, MIRACLE relies
heavily on the generation of parallel code data and does not take
into account other types of information that may be useful for code
translation, such as comments or documentation. Incorporating such
information into the generation process could potentially further
improve the quality of the generated data. Moreover, our evaluation
is mainly focused on execution-based metrics, which measure the
quality of the generated code based on its ability to execute correctly.
While these metrics are important, they do not capture other aspects

of code quality, such as readability, maintainability, or style. Future
work could explore the development of metrics that capture these
aspects of code quality.

7 CONCLUSION
In this paper, we introduce MIRACLE, a semi-supervised approach
that utilizes static analysis and compilation to generate synthetic
parallel code datasets with enhanced alignment and improves code
translation through curriculum learning on code datasets with ascend-
ing alignment levels. We evaluate the performance of MIRACLE
through extensive experiments conducted on multiple languages
and models. The proposed alignment-ascending curriculum learning
significantly improves the computation accuracy of code translation,
outperforming state-of-the-art baselines by a significant margin. No-
tably, our method achieves remarkable gains in C translations even
with a limited number of annotated training instances. Our work
showcases the importance of parallel code data with good alignment
quality and the effectiveness of alignment-ascending curriculum
learning in enhancing code translation capabilities. Future work can
extend to more tasks that benefit from large amounts of parallel data.
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