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Data-oriented attacks manipulate non-control data to alter a program’s benign behavior without violating its

control-flow integrity. It has been shown that such attacks can cause significant damage even in the presence of

control-flow defense mechanisms. However, these threats have not been adequately addressed. In this survey

paper, we first map data-oriented exploits, including Data-Oriented Programming (DOP) and Block-Oriented

Programming (BOP) attacks, to their assumptions/requirements and attack capabilities. Then, we compare

known defenses against these attacks, in terms of approach, detection capabilities, overhead, and compatibility.

It is generally believed that control flows may not be useful for data-oriented security. However, data-oriented

attacks (especially DOP attacks) may generate side effects on control-flow behaviors in multiple dimensions

(i.e., incompatible branch behaviors and frequency anomalies). We also characterize control-flow anomalies

caused by data-oriented attacks. In the end, we discuss challenges for building deployable data-oriented

defenses and open research questions.
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1 INTRODUCTION
Memory-corruption vulnerabilities are one of the most common attack vectors used to compromise

computer systems. Attackers exploit these vulnerabilities in different ways to perform arbitrary

code execution and data manipulation. Existing memory corruption attacks are broadly two types: i)
control-flow attacks [41, 87, 95] and ii) data-oriented attacks (also known as non-control attacks) [18,
49, 51, 73, 105]. Both types of attacks can cause significant damages to a victim system [14, 38].

Control-flow attacks corrupt control data (e.g., return address or code pointer) in a program’s

memory space to divert the program’s control flow, including malicious code injection [41], code

reuse [82], and Return-Oriented Programming (ROP) [95]. Defenses such as stack canaries [25],

Data Execution Prevention (DEP) [5], Address Space Layout Randomization (ASLR) [107], Control-

Flow Integrity (CFI) [1], Intel’s CET [52] and MPX [53] can prevent most control-flow attacks.

In particular, CFI-based defenses [12, 43, 80, 123] have received considerable attention in the last

decade. The idea is to ensure that the runtime program execution always follows a valid path in the

program’s Control-Flow Graph (CFG), by enforcing policies on indirect control transfer instructions

(e.g., ret/jmp).

In contrast to control-flow attacks, data-oriented attacks [18] change a program’s benign behavior

by manipulating the program’s non-control data (e.g., a data variable/pointer which does not contain
the target address for a control transfer) without violating its control-flow integrity. The attack

objectives include: 1) information disclosure (e.g., leaking passwords, private keys or address space

layout); 2) privilege escalation (e.g., by manipulating user identity data) [18]; 3) performance degra-

dation (e.g., resource wastage attack) [7]; and 4) bypassing security mitigation mechanisms [119].

As launching control-flow attacks becomes increasingly difficult due to many deployed defenses,

data-oriented attacks have received much attention in the literature [49, 51, 73, 77, 90, 119].

Data-oriented attacks can be as simple as flipping a bit of a variable. However, they can be equally

powerful and effective as control-flow attacks [49, 54]. For example, arbitrary code-execution

attacks are possible if an attacker can corrupt parameters of system calls (e.g., execve()) [14].
Recently, Hu et al. [51] have proposed Data-Oriented Programming (DOP), a systematic technique

to construct expressive (i.e., Turing-complete) non-control data exploits. Ispoglou et al. [54] also
presented a code-reuse technique called Block-Oriented Programming (BOP) that utilizes basic

blocks as gadgets along valid execution paths in the target binary to generate data-oriented exploits.

Though data-oriented attacks have been known for a long time, the threats posed by them have

not been adequately addressed due to the fact that most previous defense mechanisms focus on

preventing control-flow exploits.

The motivation of this paper is to systematize the current knowledge about exploitation tech-

niques of data-oriented attacks and the current applicable defense mechanisms. Unlike prior

papers [62, 103, 105] related to memory corruption vulnerabilities, our work specifically focuses on

data-oriented attacks. In addition to generic memory corruption prevention mechanisms discussed

in [62, 103, 105] such as memory safety, software compartmentalization, and address/code space

randomization, we mainly discuss recently proposed defenses against data-oriented attacks. Our

technical contributions are as follows.

* We systematize and categorize the current knowledge about data-oriented exploitation techniques

with a focus on the recent DOP attacks. We demystify the DOP exploitation technique by using

the ProFTPd DOP attack [49] as a case study, and provide an intuitive and detailed explanation of

this attack by analyzing its constituent steps. We discuss the automation of data-oriented attacks,
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e.g., the Block-Oriented Programming (BOP) compiler [54], STEROIDS [83], and LIMBO [92]. We

also discuss representative data-oriented exploits including their assumptions/requirements and

attack capabilities (Section 2).

* We present a three-stage model for data-oriented attacks and discuss recent defense techniques

according to different stages. Then, we provide a comparative analysis of the approaches focusing

on data-oriented attacks (Section 3).

* We characterize the side effects of DOP attacks on control-flow behaviors in multiple dimensions

in terms of the branch correlation and frequency distribution of control-flow transfers. Our

results show evidence of incompatible branch behavior and frequency anomalies caused by DOP

attacks (Section 4). Such preliminary characterization efforts could be starting points for building

potential defenses in the future.

* We also discuss some open research problems and unsolved challenges (Section 5).

2 DATA-ORIENTED ATTACKS
In this section, we first describe why data-oriented attacks have received attention among secu-

rity researchers in recent years (Section 2.1). Then we discuss two categories of data-oriented

exploitation techniques (Section 2.2) and automatically generating data-oriented exploits (Sec-

tion 2.3). We reproduce a real-world DOP attack against the ProFTPD FTP-server
1
[51] with a

detailed description of the attack to demonstrate its rich expressiveness in Section 2.4. We also

provide a brief overview of the BOP attack technique in Section 2.5. We discuss the similarity and

difference between DOP and BOP and the generality and practicality (difficulty) of both DOP and

BOP exploits in Section 2.6. Then, we map representative data-oriented exploits in the literature to

their assumptions/requirements and capabilities (Section 2.7).

2.1 Why do data-oriented attacks receive attention?
The Data Execution Prevention (DEP) or No-Execute (NX) defense prevents stack smashing [79]

and related attacks such as overwriting Structured Exception Handler. A new class of attacks,

namely the code-reuse attacks such as ROP [95], dominated in the last decade due to their capability

of bypassing DEP or NX. However, researchers have put significant effort to develop practical

security solutions for preventing code-reuse attacks. The solutions are broadly in five categories: i)
fine-grained address space randomization (ASR [44], ASLP [56], CCR [57], Selfrando [23], etc.), ii)
re-randomization (e.g., TASR [10], Shuffler [117], Remix [19], ASLR-Guard [69], etc.), iii) memory

leakage prevention (e.g., ASLR-Guard [69], XnR [6], Readactor [27], Heisenbyte [106], etc.), iv) code
pointer integrity (e.g., CPI [59], PointGuard [26], etc.), and v) CFI (e.g., BCFT [43], CCFIR [123], bin-

CFI [125], etc.). The enforcement of the above defenses makes most code-reuse attacks unreliable.

Thus, many attackers have shifted their focus from control-oriented attacks to data-oriented attacks

in recent years [51, 54].

2.2 Classification of data-oriented attacks
We classify data-oriented attacks into two categories based on how attackers manipulate the

non-control data in the memory space: 1) Direct Data Manipulation (DDM), and 2) Data-Oriented

Programming (DOP).

1) DDM refers to a category of attacks inwhich an attacker directly/straightforwardlymanipulates

the target data to accomplish the malicious goal. It requires the attacker to know the precise memory

address of the target non-control-data. The address or offset to a known location utilized in the

attack can be derived directly from binary analysis (e.g., global variable with a deterministic address)

1
The automated scripts of launching the ProFTPd DOP attack are provided at https://github.com/doppt.
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or by reusing the runtime randomized address stored in memory [49]. Several types of memory

corruption vulnerabilities, e.g., format string vulnerabilities, buffer overflows, integer overflows,

and double free vulnerabilities [103], allow attackers to directly overwrite memory locations within

the address space of a vulnerable application.

1 vo id d o _ a u t h e n t i c a t i o n ( char ∗ user , . . . ) {

2 . . .

3 i n t a u t h e n t i c a t e d = 0 ;

4 . . .

5 whi l e ( ! a u t h e n t i c a t e d ) {

6 type = pa cke t _ r e ad ( ) ; / / Corrupt a u t h e n t i c a t e d

7 / ∗ Ca l l s d e t e c t _ a t t a c k ( ) i n t e r n a l l y ∗ /

8 sw i t ch ( type ) {

9 . . .

10 c a s e SSH_CMSG_AUTH_PASSWORD :

11 i f ( auth_password ( user , password ) ) {

12 a u t h e n t i c a t e d = 1 ;

13 break ; }

14 c a s e . . .

15 }

16 i f ( a u t h e n t i c a t e d ) break ;

17 }

18 do _ au t h en t i c a t e d (pw) ;

19 / ∗ Perform s e s s i o n p r e p a r a t i o n ∗ /

20 }

Listing 1. DDM attack in a vulnerable SSH server [18]

Chen et al. [18] revealed that DDM attacks can corrupt a variety of security-critical variables

including user identity data, configuration data, user input data, and decision-making data, which

change the program’s benign behavior or cause the program to inadvertently leak sensitive data.

Listing 1 illustrates an of attacking decision-making data in the SSH server, first reported in [18].

A local flag variable authenticated indicates whether a remote user has passed the authentica-

tion (line 3). An integer overflow vulnerability exists in the detect_attack() function, which is

internally invoked whenever the packet_read() function is called (line 6). When the vulnerable

function is invoked, an attacker can corrupt the authenticated variable to a non-zero value, which
bypasses the user authentication (line 16). DDM allows attackers to manipulate the benign data

flows in a program execution without changing its control flow. FlowStitch [49] is a technique to

stitch data flows in a vulnerable program to automatically construct data-oriented exploits. It takes

a pair of source (e.g., private key buffer) and target (e.g., a publish output buffer) in a vulnerable

program as the input. The goal is to stitch the source data-flow to the target data-flow, which could

leak passwords, private keys, or randomized values, and cause privilege escalation.

There also exists multi-step DDM attacks, where an adversary exploits memory corruption

vulnerabilities multiple times to write data to adversary-chosen memory locations. For example,

suppose an attacker needs to change two decision-making variables while the vulnerability only

allows the attacker to change one value each time. It requires a 2-step DDM. Morton et al. [73] re-
cently demonstrated a multi-step DDM with Nginx (listed in Table 1). The attack leverages memory

errors to modify global configuration data structures in web servers. Constructing a faux SSL Config

struct in Nginx requires as many as 16 connections (i.e., 16-step DDM) [73].

Due to the widespread deployment of ASLR, attackers may exploit DDM to infer knowledge

about the address space layout of a process to bypass ASLR defenses. Data manipulation can also
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cause some events that result in software side-channels—typically timing side-channels—that can

leak information about the address space. To infer information about an application’s address

space, attackers analyze the output and execution time of a portion of code. They then correlate

the output and timing information by running the same portion of code locally [37, 93]. In contrast

to traditional DDM attacks with direct malicious goals, e.g., leaking sensitive data or modifying

program behavior, inferring randomized addresses serves as the first step towards malicious goals.

For example, attackers need to derandomize the address space layout before performing code reuse

attacks using DOP gadgets. For example, an attacker may overwrite a data pointer (ptr in Listing

2) to point to some byte sequences and infer knowledge about the byte sequences by observing the

output, i.e., the variable result. By pointing the data pointer to different locations of an address

space and observing the output behavior, an attacker can distinguish the mapped and unmapped

code pages.

1 s t r u c t mys t ruc t {

2 i n t v a l u e ;

3 } ;

4 vo id vu l n _ f un c t i o n ( )

5 {

6 char buf [ 6 4 ] ;

7 i n t r e s u l t =0 , l eng th , i npu t ;

8 s t r u c t mys t ruc t ∗ p t r ;

9 r e cv ( socke t , buf , i npu t ) ;

10 ptr −>va lue = s t r l e n ( buf ) ;

11 whi l e ( r e s u l t < pt r −>va lue ) r e s u l t ++ ;

12 send ( socke t , &r e s u l t , l e ng t h ) ;

13 }

Listing 2. Data pointer manipulation to infer knowledge about address space layout. This figure is adopted
from [93].

2) DOP constructs expressive data-oriented exploits [51]. It allows an attacker to perform arbitrary

computations in programmemory by chaining the execution of short instruction sequences (referred

to as DOP gadgets). DOP gadgets are similar to ROP gadgets that can perform arithmetic/logical,

assignment, load, store, jump, and conditional jump operations. However, unlike ROP gadgets, the

execution of DOP gadgets follows valid paths in a CFG. We consider Block-Oriented Programming

(BOP) [54] as a form of DOP because BOP also constructs exploits using a set of gadgets (details

are in Section 2.5). However, instead of using short instruction sequences as gadgets, BOP [54]

constructs exploits by chaining basic blocks as BOP gadgets. Both DOP and BOP adhere to CFI.

Without loss of generality, we use DOP to represent this exploitation technique, which misinterprets

multiple gadgets and chains these gadgets together by one or more dispatchers to achieve the

desired outcome. A dispatcher is a fragment of logic that chain gadgets. A typical example of a

dispatcher is a loop within the influence of a memory corruption vulnerability.

Typically, a DOP attack corrupts several memory locations in a program and involves multiple

steps. To understand the complexity and the expressiveness of the DOP technique, we dissect

a real-world DOP attack in Section 2.4. We differentiate the DOP exploitation technique from a

multi-step DDM attack. 1) Gadgets and code reuse. Both DOP and BOP attack techniques involve

reusing code execution through CFI-compatible gadgets. Multi-step DDM hinges on direct memory

writes and does not involve any gadget executions. 2) Stitching mechanism and ordering constraint.
In DOP and BOP attacks, how to orderly stitch gadgets to form a meaningful attack is important.
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Multi-step DDM attacks, e.g., crafting and sending multiple attack payloads to manipulate memory

values, do not need any special stitching mechanism and thus there is no ordering constraint.

2.3 Automatically generating data-oriented exploits
Research efforts have been undertaken to automate the process of generating data-oriented exploits.

However, identifying how to corrupt memory values for a successful data-oriented exploit is non-

trivial due to the large space of memory state configurations and attackers cannot inject malicious

code of their choice. FlowStitich [49] is a tool to automatically construct DDM from memory

errors. It identifies the influence range of the memory errors from the error-exhibiting trace (by

triggering memory errors) and generates constraints on the program input to reach memory errors.

FlowStitich then performs data-flow analysis and security-sensitive data (e.g., system call parameters

or configuration data) identification using benign traces, and selects stitch candidates from the

identified security-sensitive data flows. It finally checks the feasibility of creating new edges with

the memory errors and produces the input needed to mount a data-oriented attack. Figure 1(a)

presents an example of a web server wu-ftpd with the format string vulnerability (skipped on

line 5). Figure 1(b) shows the corresponding two-dimensional data-flow graph (2D-DFG), where

numbers on the time-axis are the line numbers in Figure 1(a). The seteuid(pw->pw uid) on line 9

is intended to drop the process’ root privilege. Suppose attackers want to retain root privilege by

exploiting the format string vulnerability on line 5. One straightforward approach, demonstrated

by Chen et al. [18], is to use DDM to directly modify the value of pw_uid. In FlowStitich, the target

flow pw->pw_uid is first identified as a security-sensitive data flow. Then, it automatically finds

another source data-flow and stitches the target flow to the source flow to achieve the same attack

goal. As illustrated in Figure 1(b), attackers may change the base pointer pw to an address of a

structure with a constant 0 at the offset corresponding to the pw_uid. The vulnerable code then
reads 0 and uses it as the argument of seteuid, achieving a privilege escalation attack.

0

0

pw1

0
100

b2

b2

b1

&pw

&arg
pw1

Address

Source flow

Time (line #)0 2 4 9

Stitch

5

1 struct passwd { uid_t pw_uid; ... } *pw;
2 ...
3  int uid = getuid();
4  pw->pw_uid = uid;
5 ... //format string error
6 void passive(void) { ...
7 seteuid(0); //set root uid
8 ...
9 seteuid(pw->pw_uid); //set normal uid
10  ... }

(a) (b)

Target flow

Fig. 1. Example of FlowStitch [49].

STEROIDS [83] is a compiler which automates the process of payload preparation in a DOP

exploit, but which leaves the gadget search and DOP instance setup unaddressed. However, it is

unclear how practical STEROIDS is for automating the construction of end-to-end DOP exploits

since it assumes DOP gadgets are arbitrarily stitchable and work for all inputs. Constructing

DOP or BOP exploits still requires a lot of manual work. Ispoglou et al. [54] presented a Block

Oriented Programming Compiler (BOPC), a mechanism to automatically evaluate a program’s

remaining attack surface under strong control-flow hijacking mitigations. BOPC provides an

exploit programming language, called SPL, that enables defenders and software developers to

define exploits independent of the target program or underlying architecture. BOPC assumes that

the target binary has an arbitrary memory write vulnerability. It finds basic blocks from the target

program that implement individual SPL statements, and chains these basic blocks together. Finally,

BOPC simulates the BOP chain to produce a payload that implements the SPL payload.

LIMBO [92] maps the automatic exploit generation problem into the software model checking

problem. Similar to software model checking, LIMBO looks for possible state transitions from
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an input state to the goal state, i.e., the reachability from an input state to the goal state. To find

the reachability, LIMBO employs concolic execution [16] with heuristics. The heuristics make the

search space small by focusing on the promising paths that likely lead to the goal states. Similar

to the BOPC [54], LIMBO [92] allows users to specify the input and goal states. In case users are

unable to find vulnerabilities for an input state, LIMBO provides an option to make a synthetic

buffer overflow by calling a function that triggers a stack buffer overflow. The goal expressions

can be setting a register (e.g., %ebx = 0x0804a010), writing to a memory (e.g., Memory[0x0804842f]

= 0xB), reading from a memory to a register (e.g., %eax = Memory[0x0804a018]) or executing

commands (e.g., system("/bin/sh")). Both BOPC and LIMBO use concolic execution and heuristics

to make state transitions. However, the key difference between these two techniques is how the two

techniques look for the goal state. BOPC divides an exploit goal into several smaller goals, confirms

the reachability of the smaller goals, and combines the smaller goals to achieve the targeted goal.

On the other hand, LIMBO considers the exploit goal as a single state and searches for the exploiting

state through the concolic execution.

The difficulty of attack generation using data-oriented exploit generation tools depends on

whether the tools support the end-to-end exploit generation. If the exploit generation tool does not

generate end-to-end exploits, then attackers must manually set up the initial phase of an exploit,

e.g., finding vulnerabilities to control memory. Also, attackers must interpret the output of the

automatic exploit generation tools. The interpretation of a tool’s output can be straightforward.

However, the setup of the initial phase can be challenging and varies between tools. For example,

BOPC requires arbitrary memory read/write primitives and an entry point for the initial phase.

Similarly, LIMBO requires control over a program state by triggering vulnerabilities (e.g., triggering
stack buffer overflow to control a stack frame). On the other hand, STEROIDS requires the gadget

lookup and gadget stitching methodologies to be provided by attackers. STEROIDS also requires

the attackers to trigger a memory corruption vulnerability. Thus, in most cases, the initial phase

of automatic exploit generation tools requires the discovery and triggering of vulnerabilities to

control and leak memory.

Address space layout randomization can exacerbate the setup of the initial phase. In the presence

of coarse-grained ASLR [107], attackers require one or more vulnerabilities to control a program’s

flow as well as to leak memory. The memory leak is necessary for obtaining knowledge about the

address space of a program. Moreover, a single memory leak is not sufficient in the presence of

fine-grained ASLR (ASR [44], ASLP [56], CCR [57], Selfrando [23], etc.).

2.4 Demystifying the ProFTPd DOP attack
We use the ProFTPd DOP attack crafted by Hu et al. [51] to illustrate the typical flow of DOP attacks.

The goal of this DOP attack is to bypass randomization defenses (such as ASLR [107]), and then

leak the server’s OpenSSL private key. The private key is stored on the heap with an unpredictable

layout, which prevents the attacker from reliably reading out the private key directly. Though the

key is stored in a randomized memory region, it can be accessed via a chain of 8 pointers. As long

as the base pointer is not randomized, e.g., when the Position Independent Executables (PIE) feature

is disabled, it is possible to exfiltrate the private key by starting from the OpenSSL context base

pointer (i.e., a known location of the static variable ssl_ctx) and recursively dereferencing 7 times

within the server’s memory space.

2.4.1 The ProFTPd vulnerability. ProFTPD versions 1.2 and 1.3 have a stack-based buffer overflow

vulnerability in the sreplace function (CVE-2006-5815 [76]). The overflow can be exploited to

obtain an arbitrary write primitive. The server program provides a feature to display customized

messages when a user enters a directory. The message content is saved in .message file in each
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directory. It can be edited by any user with write-access to the directory. The .message file can
contain special characters (i.e., specifiers) which will be replaced with dynamic content such as

time/date and server name by the sreplace function. For example, the string "%V" in .messagewill
be replaced by the main_server�ServerName string, and "%T" will be replaced by the current time

and date. Changing the working directory with a CWD command triggers the processing of .message,
and subsequently triggers the invocation of the sreplace function. To trigger a memory error in

sreplace, the attacker prepares payloads in the .message files, and then sends CWD commands to

the server.

1 char ∗ s s t r n c py ( char ∗ des t , c on s t char ∗ s r c , s i z e _ t n ) {

2 r e g i s t e r char ∗ d = d e s t ;

3 f o r ( ; ∗ s r c && n > 1 ; n−−)
4 ∗ d++ = ∗ s r c ++ ;

5 . . .

6 }

7 char ∗ s r e p l a c e ( char ∗ s , . . . ) {

8 . . .

9 char ∗m, ∗ r , ∗ s r c = s , ∗ cp ;

10 char ∗ ∗ mptr , ∗ ∗ r p t r ;

11 char ∗marr [ 3 3 ] , ∗ r a r r [ 3 3 ] ;

12 char buf [BUF_MAX] = { ' \ 0 ' } , ∗ pbuf = NULL ;

13 s i z e _ t mlen =0 , r l e n =0 , b l en ; cp=buf ;

14 . . .

15 whi l e ( ∗ s r c ) {

16 f o r ( mptr=marr , r p t r = r a r r ; ∗mptr ; mptr ++ , r p t r ++) {

17 mlen = s t r l e n ( ∗ mptr ) ;

18 r l e n = s t r l e n ( ∗ r p t r ) ;

19 i f ( s t rncmp ( s rc , ∗ mptr , mlen ) ==0) { / / check s p e c i f i e r s

20 s s t r n c py ( cp , ∗ r p t r , b len − s t r l e n ( pbuf ) ) ; / / r e p l a c e a s p e c i f i e r

with dynamic con t en t s t o r e d in ∗ r p t r

21 i f ( ( ( cp + r l e n ) − pbuf + 1 ) > b l en ) {

22 cp = pbuf + b l en − 1 ; . . .

23 } / ∗ Overf low Check ∗ /

24 . . .

25 s r c += mlen ;

26 break ;

27 }

28 }

29 i f ( ! ∗ mptr ) {

30 i f ( ( cp − pbuf + 1 ) > b l en ) { / / o f f −by−one e r r o r

31 cp = pbuf + b l en − 1 ; . . .

32 } / ∗ Overf low Check ∗ /

33 ∗ cp++ = ∗ s r c ++ ;

34 }

35 }

36 }

Listing 3. The vulnerable function in ProFTPd

Listing 3 shows the vulnerable sreplace function. The vulnerability is introduced by an off-by-

one comparison bug in line 30, and allows attackers to modify the program memory. A defective

overflow check in lines 29-34 is performed to detect any attempt to write outside the buffer boundary.
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When writing to the last character of the buffer buf, (cp - pbuf + 1) equals to blen. Thus, the
predicate in line 30 returns false, and the string terminator is overwritten in line 33. Consequently,

the string is not properly terminated inside the buffer because the buffer’s last character has

been overwritten with a non-zero byte. In the next iteration of the while loop, the input blen -
strlen(pbuf) of the sstrncpy function becomes negative, which will be interpreted as a large

unsigned integer (in line 20). Hence, the invocation of sstrncpy overflows outside buffer bounds

into the stack and overwrites local variables such as cp.
Both the source (i.e., *rptr) and the destination (i.e., cp) of the string copy function, i.e., sstrncpy

in line 20, are under the control of the attacker, where *rptr can be manipulated by the attacker

through specifying special characters in .message (e.g., "%C" will be replaced by an attacker-

specified directory name). As a result, the vulnerability allows the attacker to control the source,

destination, and number of bytes copied on subsequent iterations of the while loop in lines 15-35.

2.4.2 The attack flow. The attacker interacts with the server (over the course of numerous FTP

commands) to corrupt program memory by repeatedly exploiting the buffer overflow vulnerability.

In this scenario, the command handler cmd_loop in ProFTPd serves as the data-oriented gadget

dispatcher. On each iteration, the attacker triggers the execution of targeted gadgets by sending a

crafted attack payload to the server program, e.g., the dereference gadget *d++ = *src++ located

in sstrncpy (line 4 in Listing 3). We reproduced the ProFTPd DOP attack, and observed that the

vulnerable function sreplace is called over 180 times during the attack.

0x80d3450
mons …

0x80d3450

@0x80cf6e0

SSL_CTX* ssl_ctx@0x80de0c8

struct cert_st* cert 

CERT_PKEY* key 

EVP_PKEY* privatekey

struct rsa_st* rsa

BIGNUM* d

BN_ULONG* d 

Private Key 

0x80de0c8
main_server->
ServerName

@0x871ae4c

Dereference 
main_server->ServerName

Dereference 7 times (D1—D7)

D1: @0x874d868

@0x80d9020
resp_buf

D2: @0x874d998

D3: @0x874d9d4

D4: @0x875fab8

D5: @0x875fae0

D6: @0x875fc88

D7: @0x875fca0❶ Copy

❸ Copy

❹ Dereference

❷ Read
main_server @0x871ae3c
@0x80d6e14 0x871ae3c

…

0x874d7b8

Copy

❺ ReadLeakage to client

The base pointer

offset

offset

offset

offset

offset

offset

offset

offset

Fig. 2. ProFTPd DOP attack flow. An attacker needs to know the underlined addresses and offsets to launch
the attack.

Figure 2 shows a step-by-step description of the ProFTPd DOP attack. The underlined addresses

and offsets are acquired through binary analysis before launching the attack. During the attack, pro-

gram memory is systematically corrupted to construct a DOP program out of individual operations.

The main steps, shown in Figure 2, are described as follows.

❶ To read data from arbitrary addresses in the server, the attacker needs to overwrite string

pointers used by a public output function (e.g., send). To this end, the attacker manipulates 12

pointers in a local static mons array located at 0x80cf6e0 to a global writable location (i.e., the
attacker specifies this location, denoted by G_PTR). As shown in Figure 2, the mons array is filled

with G_PTR’s address 0x80d3450. Thus, when the server returns the date information to the

client, it prints the value pointed by G_PTR. This step builds an exfiltration channel which can

leak information from the server to the network.

❷ The attacker knows the memory address of the global pointer main_server at 0x80d6e14,
and reads the main server structure address pointed by main_server, i.e., 0x871ae3c. The read
operation is implemented by writing the address of the main server structure to the global
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writable location G_PTR, and then transmitting the output via the exfiltration channel to the

attacker side.

❸ The attacker knows the offset, 0x10, of the ServerName field in the main server structure

and is able to calculate the address of main_server�ServerName, i.e., 0x871ae3c + 0x10 =
0x871ae4c. Given the memory address 0x80de0c8 of ssl_ctx, i.e., the base pointer of a chain
of 8 pointers to the private key, the attacker writes this address to main_server�ServerName
located at 0x871ae4c.
❹ The dereferencing operation dereferences the value located at main_server�ServerName, by
triggering the execution of the dereference gadget in line 4 of Listing 3. The dereferenced value

will be copied to a known position in the response buffer resp_buf. The attacker then obtains the

address 0x874d868 of cert (D1 in Figure 2) by adding the offset 0xb0 to the dereferenced value

0x874d7b8. After that, the attacker copies the address of cert to main_server�ServerName
for the next iteration of deference. This step repeats 7 times (D1∼D7 in Figure 2) following the

dereference chain as shown in Figure 2. Finally, the address of the private key is obtained.

❺ The attacker sequentially reads 8 bytes from the private key buffer via the information exfiltra-

tion channel constructed in the first step. This process repeats for 64 times to retrieve a total of

512 bytes data.

2.5 Block-Oriented Programming (BOP) attack
Unlike DOP, BOP [54] constructs data-oriented exploits by chaining the basic blocks together

instead of instructions. The core of BOP is the Block-Oriented Programming Compiler (BOPC).

BOPC searches for the necessary basic blocks for an exploit. An exploit is written in a high-level

C like language called SPloit Language (SPL) (Figure 3(a)). BOPC maps each SPL statement to a

functional block and chains the functional blocks using a set of dispatcher blocks. The single- and

double-bordered rectangles in Figure 3(b) represent dispatcher and functional blocks. A functional

block executes the semantics of an SPL statement whereas a set of dispatcher blocks links between

two functional blocks.

rax = 101

rbx = 202 rcx = 103

rcx = 304 rax = 205 rdx = 206 rdx = 307

r0
r1
r2

rax = 101 rcx = 103

rbx = 202 rax = 205 rdx = 206

rcx = 304 rdx = 307

Statement #1

Statement #2

Statement #3

__r1 = 20

__r2 = 30

__r0 = 10Statement #1

Statement #2

Statement #3

2 4 1

1rax
rbx
rcx

(a) SPL statements (b) Functional and dispatcher blocks (c) Bipartite graph (d) Delta graph

r0
rax

rbx

rcx

rdx

r1

r2

Fig. 3. Four major components of a BOP Compiler. The double and single border boxes (□) indicate functional
and dispatcher blocks. The number inside a circle (⃝) represents the functional block number. The✕ represents
irrelevant basic blocks.

To search and select functional blocks for SPL statements, BOPC creates a bipartite graph by

associating each SPL statement with a set of functional blocks that may potentially serve the SPL

statement. Figure 3(c) shows a bipartite graph for the SPL statements in Figure 3(a) where functional

blocks ➀ and ➂ can serve SPL statement #1; functional blocks ➁, ➄, and ➅ can serve SPL statement

#2; and functional blocks ➃ and ➆ can serve statement #3. BOPC selects an association from many

possible associations. Figure 3(c) shows one such association (𝑟0 → 𝑟𝑎𝑥 , 𝑟1 → 𝑟𝑏𝑥 , and 𝑟2 → 𝑟𝑐𝑥 ).

BOPC selects a set of dispatcher blocks by constructing a delta graph as an arbitrary selection of

the dispatcher blocks may also clobber the SPL state. A delta graph is a multipartite graph that has

functional blocks as nodes. An edge of the graph represents the basic blocks that are necessary
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for moving from one functional block to the next one with the numbers of basic blocks as edge

weights. Figure 3(d) shows a delta graph for the SPL statements in Figure 3(a). A recursive version

of Dijkstra’s [24] shortest path algorithm minimizes the set of basic blocks required for moving

from one functional block and another. This minimization process produces a sub-graph of the

delta graph indicated by bold edges in Figure 3(d).

Once the subgraph is created, BOPC selects a functional block and translates the basic blocks

between the selected and the next functional blocks into constraints by leveraging concolic execution

[91]. Once the last functional block is reached, BOPC checks for satisfying assignments for these

constraints. If the satisfying assignments are possible, BOPC produces a BOP gadget chain. BOPC

does not produce an end-to-end exploit program. BOPC requires an entry point where the execution

of the exploit payload should start and outputs a set of “what-where" memory writes to indicate

the memory initialization and memory setup to execute the exploit payload.

2.6 Comparison between DOP and BOP
Both DOP and BOP are data-oriented attacks. However, DOP is focused more on the generalization

side of data-oriented attacks, whereas BOP is focused on the automation side of data-oriented

attacks. Thus, BOP has a few key differences from DOP in terms of i) automatic exploit generation,

ii) exploit writability and iii) granularity. In DOP, one must analyze and construct exploit manually,

whereas one can write BOP exploit using SPL, an easily understandable high-level C-like language.

In terms of granularity, DOP works at the gadget level whereas BOP works at the basic block

level. Note that BOPC is not fully automated. BOPC’s output is a set of address-value pairs for

memory writes. An attacker requires to modify an address with the corresponding value from the

address-value pairs to launch an attack.

The authors of DOP [51] also defined a mini-language called MINDOP to express DOP exploits,

in which the attacker’s payload can be specified. SPL specifies BOP exploits and allows the explicit

access of virtual registers, library functions, and APIs to call OS functions. MINDOP uses a set of

virtual instructions and virtual register operands. Both MINDOP and SPL are Turing-Complete lan-

guages. That means both languages support memory read/write, assignment, arithmetic operations,

logical operations, control-flow transitions (e.g., jump), function call, and system API calls.

It is easier to construct a BOP-based exploit than a DOP-based exploit because the gadget stitching

for DOP-based exploits may depend heavily on the target program. Since the DOP gadget space is

a superset of the BOP gadget space (a BOP gadget is a DOP gadget within a single basic block), it

is relatively easy to find the necessary DOP gadgets from a program. But the construction of an

exploit through stitching the gadgets is a challenging manual effort. Both types of exploits require

memory-write primitives to stitch gadgets. However, BOPC writes memory with respect to the

stack pointer and base pointer whereas we observe that the ProFTPd DOP exploit requires addresses

from the address space of the ProFTPd server. The key challenge for BOP-based exploits is to find

entry points. When a program’s execution reaches the entry point, the BOP exploit takes over and

executes the BOP payload. But, to reach the entry point, an attacker must find a vulnerability that

allows the attacker to control the program control flow. Attackers usually craft external inputs

with the exploit payload to trigger the vulnerability and to set up the memory for executing the

exploit payload.

Although BOPC is not designed to implement a complete end-to-end attack, we provide an

example to illustrate how BOPC makes the construction of a BOP exploit easier than that of a

DOP exploit. To assess the difficulty of constructing a BOP exploit, we constructed a BOP exploit

using the following SPL program (Listing 4) to invoke the execve() system call with ‘/bin/sh’
as the argument. To construct the exploit, we ran the BOPC tool in Nginx (version 1.3.9) webserver.

BOPC took around 30 minutes for the basic block abstraction process and around 5 minutes to
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find a solution for the exploit. We ran the BOPC tool in an Ubuntu 18.04 machine with 16 GB of

memory and an 8-core CPU. We ran the Nginx web server and used GDB to avoid the complication

of finding and triggering a vulnerability to divert Nginx’s control flow and set up an entry point for

the exploit. We manually crafted the entry point of the exploit with the entry point of the Nginx

program obtained through GDB. Now, when we ran the Nginx program, we observed that the

invocation of the execve() system call and execution of the dash program. However, it requires

non-trivial manual efforts to stitch the gadgets for constructing a DOP exploit to achieve the same

attack purpose.

1 vo id pay load ( ) / / execve ( ' / b in / sh ' ) pay load

2 {

3 s t r i n g prog = " / b in / sh \ 0 " ;

4 i n t argv = {&prog , 0 x0 } ;

5 __r0 = &prog ;

6 __r1 = &argv ;

7 __r2 = 0 ;

8 execve ( __r0 , __r1 , __r2 ) ;

9 }

Listing 4. SPL payload for invoking execve() system call.

2.7 Representative data-oriented attacks on real-world applications
The existence of single-step DDM attacks [18, 49] in programs is not new. However, the advanced

data-oriented attacks are new and pose serious threats to real-world programs.

Jia et al. [55] utilized data-oriented attacks to bypass the same-origin policy (SOP) enforcement

in the Chrome browser. By manipulating the values of in-memory flags related to SOP security

policy checking (which requires an arbitrary read/write privilege), the SOP enforcement can be

undermined in Chrome. Davi et al. [29] showed that a data-only attack on page tables can undermine

the kernel CFI protection. By manipulating the memory permissions in kernel page entries, the

attack makes kernel code pages writable and subsequently enables malicious code injection to

kernel space.

Rogowski et al. [88] introduced a new technique, called memory cartography, that an adversary

can use at runtime to reach security-critical data in processmemory, and thenmodify or exfiltrate the

data at will. They demonstrated the feasibility of data-oriented exploits against modern browsers

such as Internet Explorer and Chrome, where possible attacks range from cookie leakage to

bypassing the SOP. Morton et al. [73] demonstrated the potential threat of data-oriented attacks

against asynchronous web servers (e.g., Nginx or Apache). By manipulating only a few bytes in

memory, an attacker can re-configure a running asynchronous web server on the fly to degrade

or disable services, steal sensitive information, and distribute arbitrary web content to clients.

The attack consists of multiple steps (i.e., a multi-step DDM). It starts with locating the security-

critical configuration data structures of the server and exposing their low-level state by leveraging

memory disclosure vulnerabilities. Then, an adversary constructs faux copies of security-critical

data structures into memory by exploiting memory corruption vulnerabilities. By redirecting data

pointers to faux structures, a running web server instance can be re-configured by the attacker

without corrupting the control-flow integrity or configuration files on disk. However, in the end-to-

end exploits, authors in [73] simulated the arbitrary write vulnerability in the recent version of

Nginx, rather than exploiting a real-world vulnerability.

Table 1 summarizes these recent data-oriented attacks targeting at real-world applications.

Because existing CFI-based solutions are rendered ineffective under data-oriented exploits, such

threats are particularly alarming. To construct a data-oriented exploit, attackers must have an
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Table 1. Recent data-oriented attacks pose serious threats against real-world programs.

Targeted Application

and Year

Type Assumption/Requirement Capability/Attack Purpose

Chrome [55], 2016 DDM

Identified security-critical variables, and arbi-

trary read/write capability

Bypass the same-origin policy

Linux Page Table [29],

2017

DDM

Kernel code writable, and arbitrary read/write

capability

Bypass the kernel CFI

Internet Explorer,
Chrome [88], 2017

DDM

Identified security-relevant variables, and arbi-

trary read/write capability

Information leakage, bypass the same

origin policy, etc.

Nginx [73], 2018

Multi-step

DDM

Identified security-critical data structures,

known unused portion of the data section, and

arbitrary read/write capability

Disable or degrade services, information

leakage, etc.

Nginx [37], 2015 DDM

A stack vulnerability that allows an attacker to

corrupt a data pointer

Leakage of safe code pointers stored

in secret locations, i.e., bypassing the

CPI [60] protection.

Apache HTTP Server &
Glibc [93], 2014

DDM

A stack-based buffer overflow that allows at-

tackers to corrupt data variables, data pointers,

and code pointers

Derandomize code layout by learning

how code is diversified without a mem-

ory disclosure vulnerability

Nginx & Sudo & Httpdx
& Orzhttpd & Null
Httpd & Ghttpd & Sshd
& Wu-ftpd [49], 2015

DDM

(Flow-

Stitch)

Identified source and target data flows, and ar-

bitrary read/write capability

Automatic construction of DDM ex-

ploits by stitching disjoint data-flows via

exploiting memory errors (information

leakage or privilege escalation attacks)

ProFTPd [51], 2016 DOP

Memory addresses of multiple involved data,

identified gadgets/dispatchers, and arbitrary

read/write capability

Private key leakage w/ ASLR

ProFTPd, Nginx,
Sudo [54], 2018

DOP

(BOPC)

Attack payload written in SPloit Language

(SPL), and arbitrary read/write primitive

Automatic construction of BOP gadget

chain or exploit payload

in-depth knowledge of the vulnerable program’s exact memory layout at runtime. In comparison

to the DDM attack, a DOP attack requires non-trivial engineering efforts to chain gadgets for

malicious effect.

3 EXISTING DEFENSES AGAINST DATA-ORIENTED ATTACKS
We describe a three-stage model for data-oriented attacks, a taxonomy of existing defenses, and a

comparative analysis of existing defenses against data-oriented attacks in this section.

3.1 Three-stage model for launching data-oriented attacks
Figure 4 illustrates the abstract view of three stages in data-oriented attacks. To launch such attacks,

it starts with triggering a memory error of a vulnerable program (i.e., Stage S1), which empowers

an attacker with control of the memory space, e.g., read/write capability. In Stage S2, the targeted

non-control-data is modified (through either DDM or DOP). In Stage S3, the manipulated data

variable is used and takes effect to change the default program behavior. Note that S3 does not

necessarily happen immediately after the data manipulation. The back edges pointing from S3→S1

and S2→S1 indicate that an attacker may need to corrupt non-control-data multiple times to achieve

the malicious goal.

We discuss requirements in different stages (i.e., the threat model) that are essential to launching

a successful DOP attack. The first three requirements apply to DDM exploits.

* The presence of a memory corruption vulnerability (such as a buffer or heap overflow) in the target

program, which allows attackers to modify the content of the program’s memory (i.e., write
capability). This assumption is reasonable since memory-unsafe languages (e.g., C/C++) are still
widely used today for their interoperability and speed.

* Knowing the exact location of target non-control data in memory. Due to the wide deployment of

exploit mitigation technologies such as DEP and ASLR, it is likely attackers need to first leverage
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Fig. 4. Stages in data-oriented attacks and mitigation in different stages

memory disclosure vulnerabilities to circumvent the address space randomization [73]. In this

case, an exfiltration channel to achieve information leakage is needed (i.e., read capability), such

as reading data from arbitrary addresses of the target program.

* Knowing exactly the impact of an exploit on memory space of the target program. For example, a

continuous buffer overflow exploit may generate side effects that cause the program to crash.

When launching a data-oriented exploit, attackers need to avoid any CFI violation and program

crash.

* Availability of DOP gadgets that are reachable using a memory corruption and triggerable using

an exploit

* Stitchability of disjoint DOP gadgets. A gadget dispatcher dispatches and executes the functional

DOP gadgets. However, it is non-trivial to find gadget dispatchers in a program since they require

loops with suitable gadgets and selectors controlled by a memory error.

Overall, constructing DOP exploits imposes some restrictions on the nature of the vulnerability,

the context of the execution, and the defenses under deployment. Next, we discuss applicable

defenses focusing on preventing these requirements from being satisfied at different points/stages.

More generic memory corruption prevention mechanisms (in Stages S1 and S2) can be found

in [62, 103, 105]. These defense techniques can prevent general types of memory corruption attacks,

which apply for both control-flow attacks and data-oriented attacks. In addition to generic memory

corruption prevention mechanisms, a number of detection and prevention techniques specially

focusing on data-oriented attacks have been proposed in the literature. We then discuss these

defensive mechanisms in Section 3.5.

3.2 S1 Defense – Preventing the exploitation of memory errors
Memory safety enforcement is the first line of defense, which aims to prevent both spatial and tem-

poral memory errors, such as buffer overflow, use-after-free, etc. It ensures the low-level integrity

of a program’s data structures and avoids invalid memory accesses. Memory-safe programming lan-

guages have built-in mechanisms to protect memory errors. In contrast, memory-unsafe languages
such as C/C++ lack built-in memory safety guarantees, hence memory errors are prevalent in

programs written in these languages. They allow direct access to memory using pointers, which is a

common cause of memory corruption. Nevertheless, C and C++ are still widely used programming

languages today [40]. Despite considerable prior research in retrofitting memory-unsafe programs

with memory safety guarantees, memory-safety problems persist due to a trade-off between effec-

tiveness and efficiency: approaches with low-overhead usually offer inadequate protection/coverage,

while comprehensive solutions either incur a high performance-overhead or provide limited back-

ward compatibility [99, 105]. The majority of existing memory safety solutions can be generally

classified into two categories: pointer safety (i.e., pointer-based approaches focusing on pointer
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dereference operations, including pointer-based bounds checking and pointer integrity/authenticity)

and object safety (i.e., object-based approaches focusing on pointer arithmetic operations).

3.2.1 Pointer-based bounds checking. Pointer safety is typically realized by associating a lower

and upper bound with each data pointer, and adding a check at runtime that verifies that memory

accesses via the pointer fall within those bounds. Numerous pointer safety mechanisms based on

such pointer bounds checks have been proposed. SoftBound [74] and HardBound [32] perform pointer

bounds checks against metadata stored in a shadow memory area. The bounds information for each

pointer must be frequently retrieved from the shadow memory. SoftBound adds software checks to

applications hardened with it, but breaks cache locality when retrieving pointer bounds. As a result,

it leads to additional cache misses which hurt program performance. SoftBound incurs an average

performance overhead of 67% in standard benchmarks. HardBound is a hardware-assisted scheme

where the processor checks associated pointer bounds implicitly when a pointer is dereferenced.

As the check is performed by hardware logic, the average performance overhead is reduced to

∼10%. Both schemes have a worst-case memory overhead of ∼200%.
Intel’s Memory Protection Extensions (MPX) is an Instruction Set Architecture (ISA) extension

for pointer safety introduced to Intel x86-64 processors in the late 2015 Skylake microarchitecture

(MPX support was deprecated and removed from GCC and the Linux kernel [22]). MPX adds

four new 128-bit registers for storing upper and lower pointer bounds and new instructions for

managing the bounds registers and performing bounds checks on pointers. Bounds checks using

the bounds registers are highly efficient. But since the number of bounds registers is limited, bounds

information is also stored in tables with an index derived from the pointer address, similar to a

two-level page table structure in x86. A 2GB intermediate table (bounds directory) is used as a

mediator to the actual 4MB-sized bounds tables, which are allocated on-demand by the OS when

bounds are created. The hardware performs a table walk of the bounds directory and bounds tables

when bounds information is fetched to the registers. Oleksenko et al. [78] found that MPX incurs

an average performance overhead of 50% and a memory overhead of ∼90%, largely due to the

complexity of storing and loading bounds metadata.

Fat-pointer schemes store the associated bounds metadata [58] together with pointers, e.g.,
by increasing their length [75] or by borrowing unused bits from pointers [58]. Re-purposing

parts of a pointer to store validation data has the advantage of enabling fast retrieval of pointer

metadata without a need for lookups from disjoint memory. But it changes the representation of

pointers in memory in ways that break both binary and source code compatibility. Fat-pointers

have primarily been deployed in clean-slate ISA designs [61], and memory-safe programming

languages, e.g., Cyclone [28] and Rust [109]. BIMA [61] is a hardware-assisted fat-pointer scheme

for the SAFE secure computing platform [89]. BIMA limits the virtual addresses to 46 bits and

restricts pointer alignment to powers of two. This frees 18 bits in 64-bit pointers for encoding

bounds information. BIMA demonstrates that on a clean-slate ISA design, fat pointers can be

realized without a performance penalty, and a 3% memory overhead due to segmentation caused by

alignment restrictions on BIMA pointers. Low-fat-pointers [34, 35] are an alternative to fat pointers

compatible with commodity 64-bit hardware architectures, such as x86-64. Low-fat-pointers require

customized stack and heap allocators that restrict both stack frame and heapmemory allocation sizes

to a fixed finite set, and split the main program stack and heap into several sub-stacks and sub-heaps,

one for each possible allocation size. Pointer accesses are then validated according to the allocation

bounds associated with the corresponding sub-stack or sub-heap. The improved compatibility

comes at the cost of accuracy, as low-fat-pointers accesses are only enforced at allocation bounds.

On average, low-fat-pointers adds a performance penalty of 54% (16% for out-of-bounds writes)

and memory overhead of 15% for stack data, and incurs a 56% performance (13% for out-of-bounds
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writes) and 11% memory overhead for heap data. Yong et al. [122] presented a security-enforcement

tool for C programs preventing unchecked pointer dereferences. The proposed method uses static

analysis to identify unsafe pointers in the program, as well as the memory locations that can be the

legitimate targets of these pointers. To reduce the runtime overhead, only write instructions via

unsafe pointers are instrumented to check for violations. An attack involved an attempt to write to

non-allocated storage, or to an inappropriate location on the stack (e.g., the return address) will be

detected.

Write-Integrity Testing (WIT) [4] uses points-to analysis to compute the control-flow graph and

the set of objects that can be written by each instruction in a program. Then it generates code

instrumented to enforce write integrity, which prevents instructions from modifying objects that

are not in the set computed by the static analysis. To achieve a low runtime overhead, WIT only

instruments writes without instrumenting reads, and thus is considered an S1 defense. It does not

prevent out-of-bounds reads. The authors also developed several optimizations to reduce the space

and time overhead in the implementation. WIT achieves a low average overhead of 7%, and the

maximum overhead is 25% across a set of CPU intensive benchmarks. It is an approximation of the

spatial memory safety (e.g., preventing out-of-bound writes) in terms that the data write integrity

typically maintains bounds based on static points-to analysis. Before each write dereference, it

checks whether the location is within its valid points-to memory region. WIT mitigates use-after-

free (UAF) vulnerabilities to a certain extent, because the attacker cannot use a dangling pointer to

write to an object of a different equivalence class.

3.2.2 Pointer Authenticity/Integrity. Pointer authenticity/integrity aims to ensure the validity of

pointers, i.e., the value of a pointer (the address of the target object) is not arbitrarily controllable by
an attacker, even in the presence of memory corruption vulnerabilities that may allow a manipula-

tion over the pointer value. PointGuard [26] encrypts all pointers at runtime by XORing them against

a key generated at program initialization. The encryption on each pointer must be reversed before

dereferencing a pointer. PointGuard incurs a small to medium overhead (0%∼20%), but is vulnerable
to information disclosure, e.g., if an attacker learns the key or the XORed ciphertext of a pointer to

a known address. Code-Pointer Integrity (CPI) [60, 113] provides control-flow hijacking protection

rather than the complete memory safety. Therefore, it incurs a very low performance overhead

with around 1.9% (C program) or 8.4% (C/C++ program) slowdown. Kuznetsov et al. [60, 113] also
introduced a relaxation of CPI with better performance properties, called code-pointer separation

(CPS), to achieve better security-to-overhead trade-off. However, this solution only protects code

pointers with non-control data unchecked.

Pointer Authentication (PA) [84] is a hardware pointer authenticity primitive introduced in the

ARMv8.3-A processor architecture to protect programs from exploiting memory vulnerabilities.

PA introduces a set of new instructions for calculating and verifying a Pointer Authentication Code
(PAC) for pointers. The use of an unauthenticated pointer would cause a memory translation fault.

Each PAC is generated using a key from a set of five different keys and a modifier. The kernel

generates the five keys for each process and stores them in internal CPU registers which are not

accessible from userspace code. These keys remain the same throughout the process lifetime. Out

of the five keys, two are used for generating PACs for code pointers, two for data pointers, and one

for general purpose uses. The modifier usually captures the contexts of pointer declarations and

accesses. To store PACs, PA uses the unused bits in the virtual address of 64-bit address space. In a

64-bit Linux kernel, PA uses 24 bits for the PACs, but the size can vary based on memory scheme

and address tag usages. However, PA has a few concerns regarding the PAC generation. Since PAC

generation keys stay the same for the lifecycle of a process, and modifiers may have repeatability,

attackers may reuse previously generated PAC and pointer pair at a later stage to replace another
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PAC and pointer that uses the same modifier [65]. If the modifier does not uniquely capture the

context, it might repeat in different contexts and allow such reuse attacks. For example, in return

address signing using the stack pointer (SP) values as modifiers, a return address authenticated

for one function can be used for another function if the SP values in both functions are the same.

To address these concerns, the Pointer Authentication Run-Time Safety (PARTS [65]) technique

augments the PA-based defense approach and compartmentalizes the PAC generations for different

pointers in different contexts. The key idea of the PARTS approach is to utilize a pointer’s type as a

modifier. The type potentially captures the context in which the pointer is created and dereferenced.

PARTS provides a proof-of-concept implementation based on LLVM and incurs an overhead of less

than 20%.

Pointer-based approaches generally suffer from a poor scalability in terms of increased execution

time and memory consumption as the number of protected pointers increases. They also require a

comprehensive understanding of a program’s memory layout at individual pointer granularity over

time in order to differentiate between benign (within bounds) memory accesses from malicious

(out-of-bounds) memory accesses. Another concern is the compatibility problem with unprotected

modules, which could modify or dereference signed pointers and result in false alarms.

3.2.3 Object-Based Approaches. Instead of enforcing bounds checking with pointers, object-based

approaches detect out-of-bounds memory accesses to objects. It solves the compatibility issues

caused by pointer-based approaches. AddressSanitizer (ASan) [94] is a memory error detector for

Linux available in GCC and Clang/LLVM. It can detect out-of-bounds memory accesses to global,

stack, and heap objects. In addition, it can detect a number of temporal memory errors, such as

use-after-free and double free conditions. ASan tracks objects stored in application memory by

storing metadata on each object in a disjoint shadow memory area that occupies a fraction of the

application’s virtual memory space. The shadow memory records which memory regions in the

application memory are allocated and used, and therefore safe to access. However, these memory

safety guarantees do not preclude erroneous memory accesses in which a corrupted pointer de-

references a valid, but unintended memory object. In addition, ASan places blocks of "poisoned"

memory between adjacent objects in the stack, heap and global storage (i.e., blacklisting unsafe

memory regions). Different from approaches that whitelist safe memory regions, poisoned memory

is marked as invalid in the application’s shadow memory, and acts as "red-zones", which, if accessed,

indicates a contiguous overflow, e.g., beyond the array boundary. However, memory errors that

enable non-contiguous accesses or accesses with a larger step distance than the size of the red-zone

can violate spatial safety without setting off the tripwire. Hardware-assisted AddressSanitizer

(HWASAN) [46] is a tool similar to AddressSanitizer, but based on partial hardware assistance. It

relies on address tagging support which is only available on ARM’s 64-bit architecture (AArch64).

3.3 S2 Defense – Providing a barrier to access to data or guess memory layout
The purpose of S2 defenses is to mitigate the consequences of attacks in the presence of memory

vulnerabilities, including software compartmentalization [36, 71, 114] and address randomization
(diversification) [9, 107] techniques. They serve as the second line of defense, which creates a barrier

for attackers trying to access target data or infer memory layout.

3.3.1 Software Compartmentalization. Software compartmentalization isolates software compo-

nents into distinct protection domains in order to limit the utility of existing memory errors (i.e.,
when the memory error and data to be manipulated exist in different protection domains), but

also limit the abilities of a compromised software component. For example, Software Fault Isolation
(SFI) [114] compartmentalizes software in a single address space by sandboxing distrusted modules

into separate fault domains, which are arranged to occupy a distinct portion of the program’s
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address space. SFI-enforcement ensures code in the fault domain is unable to directly access memory

or jump to code outside the reserved portion of address space. It can only interact with code outside

its domain through well-defined call interfaces.

XFI [36] is a SFI variant for MicrosoftWindows for isolating shared libraries within an application,

or drivers within the kernel. However, XFI does not protect against confused deputy attacks, where
a distrusted module abuses an over-permissive kernel routine that the module is allowed to invoke.

LXFI [71] extends SFI to Linux kernel modules, which exhibits a more complex interface, e.g.,
callbacks invoked by the kernel make manual interposition more difficult. LXFI also enables

compartmentalization between different instances of a single module, e.g., a kernel driver which
may instantiate server module principals, such as block devices or sockets. CHERI [118] is a
hardware-assisted capability model for the 64-bit MIPS ISA that can support different protection

models, such as pointer safety and software compartmentalization [111, 116].

3.3.2 Address Randomization. Address randomization aims to hide attack targets by randomizing

the location of program segments [62], layout of the code (instruction set) [27], or layout of data [9]

so that attackers are unable to predict the target data or code location from an address space. In

particular, data space randomization [8, 9, 44] aims to randomize the locations of data stored in

program memory at runtime to make the locations unpredictable, and thus reducing the possibility

that attackers can leak security-critical memory addresses or manipulate the content of targeted

data. ASLR [107], also known as coarse-grained ASLR, randomly relocates only the base addresses

of the stack, heap, code segments, and shared libraries on each execution of a program. However,

the internal layout of a segment or module remains unchanged. Also, to relocate the code and

data segments of the main executable of a program, it is necessary to run the program as position-

independent code (i.e., with the PIE feature enabled). Fine-grained ASLR techniques relocate the

internal layout of a segment ormodule up to different granularities such as function-level [23, 44, 56],

basic block-level [19, 57, 115], instruction-level [47], and machine register-level [27, 48]. Attackers

can still figure out the fine-grained address space layout of a program within a few seconds [3]

using advanced attack techniques [101].

Though strong randomization can stop memory corruption attacks with a high probability,

the protection is confined to all data/addresses that are randomized/encrypted. In practice, to

avoid a significant performance degradation, not all data/addresses are protected by randomization

defenses [105]. On the other hand, information leaks can undermine randomization techniques [101].

ASLR-Guard [69] can add an extra layer of protection for randomization techniques suffering from

information leaks. Besides, ASLR-Guard [69] can render the code pointer leak through a data

pointer useless by separating the data and code using a custom linker that generates new relocation

information to fix the offset between the data and code. In addition, data/address encryption based

solutions are not binary compatible (i.e., protected binaries are incompatible with unmodified

libraries) [105].

3.4 S3 Defense – Preventing/detecting use of corrupted data
Data-Flow Integrity (DFI) [15] mitigates data corruption before the manipulation takes effect.

Before each read instruction, DFI ensures that a variable can only be written by a legitimate write

instruction which can be derived by reaching definitions analysis. For each read instruction for

reading a value, it statically computes the set of write instructions that may write the value, and

assigns an identifier to each definition. DFI enforces a simple safety property, i.e., whenever a
value is read (used), the definition identifier of the instruction that wrote the value should be in

the set of reaching definitions for the read. DFI is different from the data write integrity checking

in S1 defense (such as WIT [4] ) in that it enforces data integrity for memory reads. Thus, the
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enforcement of DFI happens in Stage 3. WIT prevents data manipulation by protecting against

invalid/unintentional memory writes, but with reads left unchecked. In addition, since DFI could

potentially limit the DOP gadget availability, it is active at both S2 and S3 in our three-stage model.

DFI enforcement can prevent both control-data (e.g., overwriting the return address) and non-

control-data attacks. However, DFI usually overestimates the set of valid write instructions since the

set is statically determined without runtime information. Moreover, Software-based DFI incurs a

high performance overhead [51] due to the frequent read instruction checking. Intra-procedural DFI

incurs 44% and inter-procedural DFI incurs 103% runtime performance overhead, respectively, and

approximately 50% space overhead for instrumentation [15]. Hardware-based DFI, e.g., HDFI [102],
is efficient, but limited by the number of simultaneous protection domains it can support. Carlini et
al. [14] have recently revealed fundamental limits on the effectiveness of CFI, and presented the

Control-Flow Bending (CFB) which allows an attacker to "bend" the control-flow of a program but

adheres to CFI’s security policies, i.e., modifying indirect branch targets that are valid based on

a CFI policy. Depending on the granularity of compartmentalization and the boundaries of the

security domain, software compartmentalization can also function as a defense in S3. It can prevent

the use of corrupted data. For example, when a corrupted pointer is referencing memory in another

protection domain, it thwarts the dereference operation. Besides, some techniques [30, 106] can

prevent the execution of code pointed by corrupted data or memory. Heisenbyte [106] is such a

technique that utilizes “destructive code read”. The “destructive code read” allows the execution of

code as part of the normal flow of a program and restricts the execution of the same code when

used in a dynamic code-reuse attack. Another technique called Isomeron [30] tackles the usage of

existing code pointed by corrupted data or memory by randomizing the execution paths.

Data Space Randomization (DSR) [9] encrypts data (i.e., randomizes the representation of data

objects with a unique randommask) stored in memory, rather than randomizing the location of data

objects. When a variable is used, its value will be first derandomized by using the unique random

mask associated with the variable. By using different masks for different variables, DSR ensures

that even if the attacker manages to overwrite a target variable, the attacker is only able to write a

random value into it rather than the intended value. Instead of using a different mask for each data

object, Data Randomization [13] groups data objects into different classes, assigns a random mask

for each class, and generates instruments code to XOR data read from or written to memory with the

corresponding mask. As a result, accesses that violate the read or write integrity have unpredictable

results. Another recent DSR technique called CoDaRR [85] continuously rerandomizes the masks

used in variables with load and store instructions while being transparent to program execution. The

dynamic nature of CoDaRR prevents disclosure attacks. DSR [9, 85] and Data Randomization [13]

are effective against non-control data attacks by preventing attackers from using the corrupted data

in the memory space (although they can overwrite target data variables). And thus they actually

take effects at Stage 3. Nevertheless, masking/unmasking every memory access inevitably incurs

nontrivial runtime overheads, which hinders their practical deployments.

Szekeres et al. [105] highlights in their paper that real-world software exploits are still possible

because memory vulnerabilities continue to grow and currently deployed defenses are being

bypassed. Thus, program anomaly detection [21, 97, 120, 124] may complement the aforementioned

mitigation techniques, and may serve as the last line of defense against data-oriented attacks. As

shown in Figure 4, passive monitoring based program anomaly detection has the potential to detect

anomalous program behaviors exhibited in all the three stages.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:20 Cheng et al.

3.5 Defense mechanisms specially against data-oriented attacks
Besides the generic memory corruption prevention mechanisms which can be applied to defeat

data-oriented attacks, here we discuss detection and prevention techniques explicitly focusing on

data-oriented attacks.

YARRA [90] is a C language extension that validates a pointer’s type for critical data types
annotated by developers. It guarantees that critical data types are only written through pointers

with the given static type. YARRA is suitable for hardening access to isolated pieces of critical data,

such as cryptographic keys stored in program memory at runtime. However, when applied for the

whole program protection, it incurs performance overhead around 400%–600%. Besides, YARRA

relies on the programmers’ manual annotations, which is undesirable for complicated programs.

HardScope [77] is a hardware-assisted variable scope enforcement approach to mitigate data-

oriented attacks. It performs intra-programmemory isolation based on C language variable visibility

rules derived during program compilation. On each memory access (i.e., load/store), HardScope
enforces that the memory address requested is in the accessible memory areas. Nyman et al. [77]
demonstrated the effectiveness of HardScope for the RISC-V architecture, by introducing a set

of seven new instructions. HardScope instruments instructions at compile-time and enforces

memory access constraints at runtime. HardScope’s performance overhead is reasonable with

3.2% in embedded benchmarks. Although HardScope significantly reduces the usefulness of DOP

gadgets and thwarts Hu et al. [51]’s example attacks, HardScope cannot guarantee the absence of

DOP gadgets in arbitrary programs.

PrivWatcher [17] is a framework for monitoring and protecting the integrity of process credentials

(i.e., task_struct that describes the privileges of a process in the Linux kernel) against non-control

data attacks. PrivWatcher provides non-bypassable integrity assurances by relocating process

credentials into a safe region, code instrumentation and runtime data integrity verification. It

incurs more than 94% overhead for applications that involve installing new task_struct structures
to processes.

Hardware-Assisted Data-flow Isolation (HDFI) [102] extends the RISC-V architecture to provide an

instruction-level isolation by tagging each machine word in memory (also known as the tag-based

memory protection). The one-bit tag of a memory unit in HDFI is defined by the last instruction that

writes to this memory location. At each memory read instruction, HDFI checks if the tag matches

the expected value. However, unlike software-enforced DFI, HDFI only supports two simultaneous

protection domains.

PT-Rand [29] aims to protect a data-oriented attack against kernel page tables to bypass CFI-based

kernel hardening techniques. To mitigate the manipulation of page tables, PT-Rand randomizes the

location of the page tables. PT-Rand incurs a low overhead of 0.22% for common benchmarks on

Debian. However, it is still possible attackers undermine these schemes if the secret information

(e.g., randomization secret) is leaked or inferred [77].

Both C-FLAT [2] and eFSA [20] identify non-control-data attacks through their effects on the

control-flow of a program in embedded systems, such as Internet of Things (IoT) or Cyber-Physical

Systems (CPS). C-FLAT [2] enables remote attestation of an application’s control-flow path, which

allows a verifier to detect control-flow deviations launched via code injection, code-reuse, and

certain non-control-data attacks. Since C-FLAT computes an aggregated authenticator of the

program’s control flow, including branches and function returns, it can detect non-control-data

attacks that affect a program’s sequence of executed instructions or the number of loop iterations.

eFSA [20] is an event-aware finite-state automaton model for detecting non-control-data attacks

against programs in CPS. It takes advantage of the event-driven nature of CPS control programs and
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incorporates event checking in anomaly detection. It detects non-control-data attacks if a specific

physical event is missing along with the corresponding event dependent executed instructions.

CVI (Critical Variable Integrity) [104] verifies define-use consistency of critical variables for

embedded devices. The define-use consistency enforces that the value of a variable cannot change

between two adjacent define- and use-sites. After identifying critical variables (either automatically

identified or manually annotated), the compiler inserts instrumentation at all the define- and

use-sites for these critical variables, to collect values at runtime and send them to an external

measurement engine. CVI checking compares the current value of a variable at every use-site

and the recorded value at the last legitimate define-site. However, like DFI [15], CVI is based on

compile-time instrumentation and frequent runtime checking, which incurs a high overhead for

the complete protection.

Hardware-based detector I. This detector [110] utilizes Hardware Performance Counters (HPCs)

to collect hardware events related to instructions retired, cache-misses suffered, and branches

miss-predicted for detecting data-only exploits. The authors collect 12 hardware events during the

normal and abnormal executions of OpenSSL and train a multi-class support vector machine model

to classify normal and abnormal behaviors. Two fundamental limitations of this HPC-based detector

is that i) the co-executing programs significantly affect HPC-based events and ii) HPC-based events
are dependent on instruction set architectures (ISAs).

Hardware-based detector II. This detector [66] utilizes the HPC events as short time series by

monitoring various execution regions of a vulnerable program. Especially, the samples include

the region before, during, and after executing a vulnerable region of a program. This time series

approach enables more fine-grained detection than using only hardware events. Classification

algorithms such as the Stacked Denoising Autoencoder and Echo State Network classifiers are

around 98% accurate for detecting data-oriented exploits.

In summary, HDFI [102], PrivWatcher [17], PT-Rand [29], and CVI [104] protect specifically

non-control data. HardScope [77] can protect against all DOP attacks that violate variable visibility

rules at runtime. However, its main drawback is that the new hardware extensions [102] set a high

bar for deployment. On the other hand, the two general approaches DFI [15] and YARRA [90]

incur a high performance-overhead at runtime. In general, the HPC-based hardware events are

significantly affected by co-existing programs. Thus, the filtration of the hardware events that

are produced by co-existing programs is a critical step for obtaining accuracy and reliability by

HPC-based detectors. The time-series approach used by the hardware-based detector II [66] makes

the detector less independent of the underlying applications. Different from the above works

focusing on traditional programs, C-FLAT [2] and eFSA [20] target at detecting non-control-data

attacks in embedded systems by monitoring their side-effects on control-flow behavior.

4 CHARACTERIZATION OF CONTROL-FLOW ANOMALIES IN DATA-ORIENTED
ATTACKS BASED ON HARDWARE-ASSISTED CONTROL-FLOW TRACING

In this section, we conduct a branch correlation analysis and frequency-based analysis to character-

ize control-flow anomalies during the course of data-oriented attacks based on hardware-assisted

control-flow tracing. We consider the scenario where one can efficiently trace control flows, i.e.,
recording indirect control transfers and conditional branches. With new hardware development,

namely Intel Processor Trace (PT)
2
, efficient real-time control-flow monitoring has the potential to

be widely deployed. There exist cases where data-oriented attacks could be detected by correlating

or aggregating multiple control-flow observations. In the branch correlation analysis approach,

2
PT is a low-overhead hardware feature on Intel CPUs that enables the construction of the complete control flows during

program execution [64].
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we show that programs under data-oriented attacks may exhibit incompatible branch behavior. In

the frequency anomaly-based approach, we show that the frequency distributions of a program’s

normal executions might be different from the program’s execution under data-oriented attacks.

It is important to note here that our analysis in this section is an initial characterization effort to

understand how DOP attack-behaviors differ from normal executions. The characterization insights

could be starting points for building potential defenses in the future. Our intention is to stimulate

a discussion about potential ways (in addition to the existing defense mechanisms described in

Section 3) to defend against data-oriented attacks.

4.1 Control-Flow Characterization in Data-Oriented Attacks
The necessary condition for a data-oriented attack to exhibit control-flow anomalies is that the

attack directly or indirectly affects the flow of a program’s execution. Typically, uses of non-control

data in a program can be classified either as predicate uses or non-predicate uses.A predicate-use

directly affects the control flow. While a non-predicate use may affect the computation or the output

of a program [86]. We categorize the cases where data-oriented attacks are impossible to detect

(i.e., undetectable cases) and cases where such attacks may be detected (i.e., detectable cases) by
control-flow tracing. For the detectable cases, we provide experimental observations in Section 4.3

and Section 4.4.

Undetectable cases. Detecting data-oriented attacks using control-flow tracing requires that an

attack manifests incompatible/unusual control-flow behaviors, e.g., incompatible branch behaviors

or frequency anomalies. However, when a manipulated variable is only used for computation or

output (i.e., non-predicate use), and the exploit does not incur any side effect on control transfers,

such an attack is undetectable by PT-based control-flow tracing. We list typical undetectable cases

(after the phase of triggering memory errors), which are mainly direct data manipulation (DDM)

attacks.

* Corrupting user identity for privilege escalation: Simply corrupting user identity data (e.g., UID)
may lead to a compromise of the root privilege. However, for an undetectable data manipulation

with the privilege escalation, an attacker typically performs malicious actions after obtaining the

new privilege, e.g., launching a shell. Such malicious actions can be easily detected by control-flow

tracing.

* Corrupting configuration data: Corrupting configuration data via format string vulnerabilities

may evade PT-based detection, since format string vulnerabilities allow a single memory write

without a side effect on control-flow behavior.

* Constructing exfiltration channels for information leakage: Attackers exploit an existing infor-

mation outlet (also known as sink functions such as printf or send) for information leakage by

replacing the pointer value of the outlet function’s parameter with the address of the data to be

exfiltrated. Such an attack may not incur any anomalous control-flow behavior.

Detectable cases. We observe that data-oriented attacks can potentially lead to three types of

anomalous control-flow behaviors.

* Incompatible branch behavior : Manipulating a predicate-use variable (e.g., decision-making data)

can change the default branch behavior of a program. If there exist two correlated conditional

branches that are data-dependent on the manipulated variable before and after the data manipu-

lation site, it is likely the data manipulation incurs incompatible branch behaviors that can be

detected by control-flow tracing. For example, in Listing 1, the conditional branches in lines 5 and

16 are correlated, since they both are data-dependent on the variable authenticated. Suppose
authenticated is corrupted at line 6 and there is no write to authenticated after the data ma-

nipulation. As a result, while(!authenticated) in line 5 returns true, but if(authenticated)
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in line 16 also returns true. We observe an incompatible branch behavior, which is detected when

the corrupted variable authenticated is used in line 16 (i.e., in Stage 3 of the attack). In addition,

a continuous buffer overflow may generate side effects on control-flow behavior, which could

result in an incompatible control-flow path observable in Stage 2. Though the target buffer is

not used for predicate-use, some decision-making variables close to the buffer may be inevitably

corrupted. We manually analyzed 14 vulnerable programs in a test suite for buffer overflows [108],

and found that 5 out of 14 overflows have an impact on decision-making variables involved

in predicate expressions. In Section 4.3, we experimentally characterize the branch correlation

behaviors of ProFTPd under the DOP attack.

* Macro-level interaction frequency anomaly: In DOP (also BOP) attacks, an attacker normally needs

to interact with a vulnerable program to repeatedly corrupt variables to achieve the attack purpose

and avoid segmentation faults. This attack activity inevitably results in frequency anomalies

during the client-server interaction, which can also be captured by control-flow tracing. For

example, in the ProFTPd DOP attack introduced in Section 2, an attacker needs to send a large

number of FTP commands with malicious inputs to the ProFTPd server to corrupt the program

memory repeatedly.

* Micro-level control-flow frequency anomaly: Short control-flow paths may exhibit unusual exe-

cution frequencies. For instance, corrupting variables which directly or indirectly control loop

iterations can cause such frequency anomalies. Micro-level control-flow frequency anomalies may

be observed in different stages of data-oriented attacks. In addition, control-flow bending (CFB)

attacks [14] and resource wastage attacks [7] may also lead to unusual control-flow frequencies.

In Section 4.4, we experimentally compare the frequency differences of both the macro-level

interactions and micro-level control-flows in normal ProFTPd executions and under a DOP attack.

4.2 Tracing Indirect and Conditional Branches with PT
In this section, we briefly explain the control-flow information recorded by PT, which is necessary

to understand our experimental results. To capture control-flow information, PT records target

addresses of indirect branches (i.e., TIP packets/events for the indirect call, indirect jmp, and ret)
and taken/non-taken decisions of conditional direct branches (i.e., TNT packets/events). PT uses a

highly compressed data format to log traces at runtime for efficiency. For example, it uses one bit

to indicate taken or not-taken for a conditional branch.

Recent research has shown PT’s applicability for on-line security enforcement to defend against

control-flow attacks (referred to as dynamic CFI solutions). Griffin [42] is an operating system

mechanism (running in the kernel) that leverages the PT feature to enforce CFI policies. PT-CFI

[45] and FlowGuard [67] are two backward-edge control-flow violation detection systems using

PT tracing. To address the over-approximation problem of control targets in forward-edge CFI,

PittyPat [33] utilizes PT to track basic block execution to compute the legal control transfer target

sets through runtime path-sensitive point-to analysis. But PittyPat still makes approximations,

as an incomplete execution context is used in its points-to analysis. 𝜇CFI [50] improves PittyPat

by recording full execution context with PT to perform an accurate points-to analysis, and thus

getting a unique code target for each indirect control-flow transfer. However, none of these existing

works investigates the PT-based detection against data-oriented attacks. In what follows, we look

into the possibility of PT-based detection against DOP attacks, which can also be applied to detect

DDM attacks.

4.3 Characterization of Incompatible Branch Behavior
In branch correlation analysis, we utilize the correlations among control-flow branches to detect

incompatible branch behavior. We define two types of branch correlations: i) subsume and ii)
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mutually exclusive. We say a branch condition/predicate BR𝑖 subsumes another branch condi-

tion/predicate BR𝑗 when BR𝑖 ’s true branch satisfies the branch BR𝑗 to take the true branch. For

example, 𝑥 > 10 subsumes 𝑥 > 5. BR𝑖 and BR𝑗 are mutually exclusive if they always take different

branches. For example, 𝑥 > 10 and 𝑥 < 5 are mutually exclusive. Incompatibility in runtime

subsume and mutually correlations may indicate unusual program behaviors.

4.3.1 How to identify branch correlation. We can use the satisfiability modulo theories (SMT) solver

Z3 [31] to determine subsume or mutually exclusive correlation between branches. To determine

the subsume correlation between two branches, e.g., (BR1) and (BR2), we feed the branch predicates

as constraints to the SMT solver. However, we feed the logical negation of one of the branch

conditions, i.e., (BR1) and Not(BR2). If the SMT solver can not find a solution for the combined

constraints, i.e., (BR1) and Not(BR2), this indicates that BR1 subsumes BR2, otherwise they are

mutually exclusive.

Line 21

Line 30 If ( ( cp – pbuf + 1 ) > blen ) { 
cp=pbuf+blen-1;

pr_log_pri (”Warning...”);

}
*cp++=*src++; 

sstrncpy( cp, *rptr, blen - strlen(pbuf) ); 

if ( ((cp + rlen) - pbuf + 1) > blen ) {

cp=pbuf+blen-1;

pr_log_pri (”Warning...”);

}
pbuf cp

…

blen

pbuf cp

x…

BR1

BR2

strlen( pbuf ) > blen
…

buf

buf

❷

❶

Subsume

Fig. 5. Branch correlation and an incompatible branch behavior in the ProFTPd DOP attack

We utilize the above technique to identify two branches from ProFTPd’s vulnerable function

sreplace in Listing 3. The conditional branches in lines 21 and 30 of Listing 3 are correlated. Both

are data dependent on the same variables cp, pbuf, and blen. Figure 5 shows these two correlated

branches, denoted as BR1 and BR2, respectively. To derive the subsume relationship from BR2 to

BR1, we first add the predicate BR2 as a constraint into Z3 solver. However, cp gets redefined in

line 31 (Listing 3), which is true-control-dependent on the branch in line 30. Thus, we need to

replace BR2 with the statement in line 31 as the constraint, i.e., cp==pbuf+blen-1. Then, we add the

constraint Not(((cp+rlen)-pbuf+1) > blen) to the solver. Because the variable rlen is the length of a

non-null string (derived from the source code), we add rlen > 0 as an additional constraint. At the

end, the solver returns UNSAT (unsatisfiable), and thus we derive that BR2 subsumes BR1, i.e., if
BR2 returns true, BR1 should also take the true branch.

4.3.2 Existence of runtime incompatible branch behavior in ProFTPd DOP. To examine the existence

of any runtime incompatible branch behavior in the ProFTPd DOP attack, we observe and analyze

the execution patterns of the attack on a 32-bit Ubuntu 16.04 computer with Intel Processor Trace

(PT) enabled. To automate the observation and analysis process, we modify the original ProFTPd

DOP attack. The modified script and traces are available at https://github.com/doppt/data-oriented-

attacks. Now, during the course of the ProFTPd DOP attack, the attacker first triggers the memory

corruption error in sreplace, by filling up buf (where BR2 returns true) and overwriting buf ’s
terminator with a non-zero byte (in line 33 of Listing 3), as shown in ❶ in Figure 5. Since buf ’s last
character is a non-zero value, it becomes a non-terminated string. As a result, strlen(pbuf) > blen
(❷ in Figure 5), which enables the attacker to corrupt the local variables such as cp and blen in line

20. To bypass the overflow checking in lines 21-27 in the following iterations, the attacker needs to

make sure that the predicate in line 21 returns false. From the PT trace, we observe the predicate

in line 21 (i.e., BR1) takes the false branch. Since BR2 subsumes BR1, and BR2 has taken the true
branch, the runtime branch behavior of BR1 and BR2 are incompatible. Note that the observed

incompatible branch behavior is not specific to DOP attacks. For any DDM attack against the
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ProFTPd, as long as the attacker exploits the same vulnerability (CVE-2006-5815 [76]), we should

observe this incompatible behavior.

4.3.3 Challenges of identifying branch correlations. Conditional branches are optional execution
paths. Prior studies show that conditional branches are not completely independent of each

other [126]. In many instances, a branch’s outcome can be correlated by other branches’ out-

comes. Specially, we use the "strong correlation" to indicate that a branch’s outcome can be derived

from other branches’ outcomes. Branch correlations have been well investigated for compiler opti-

mizations (such as static branch prediction and elimination) [72] [39]. Zhang et al. [126] exploited
correlations among branches to detect infeasible program paths caused by attacks. However, their

approach is restricted to simple forms of intra-procedural conditional predicates, e.g., comparing a

variable with a constant value. As a result, only limited branch correlations can be explored for

anomaly detection in [126].

It is challenging to statically determine complicated branch correlations with arbitrary predicate

expressions, especially for predicates with indirect data-dependency or involving function calls.

We identify the following scenarios that make branch correlation analysis non-trivial.

• Complex predicate expression: A branch predicate may be the combination of multiple

conditions, and involves multiple variables and operands. It is difficult to directly derive the

"subsume" or "mutually exclusive" relationship between branches with complex expressions.

If the predicate coverage of one branch BR1 is no less than the predicate coverage of another

branch BR2, we say BR1 "subsumes" BR2. BR1 and BR2 are "mutually exclusive" if there is no

overlap between their predicate coverages.

• Indirect correlation: Two branches may be correlated with each other without having a

direct connection (e.g., using the same predicate variable). For example, two branches use

different predicate variables, but these variables exhibit a data-dependency. Another scenario

is that the outcome of one branch changes the condition determining the outcome of another

branch.

• Inter-procedural correlation: Branches in different functions can be correlated if there exists

an inter-procedural data-dependency between predicate variables. Such a correlation usually

has a longer distance.

4.3.4 Potential of branch correlation. Our LLVM-based [68] algorithm automatically identifies

coarse-grained correlated branches. We first obtain the LLVM Intermediate Representation (IR)

of a program, and construct the program dependence graph, including both data and control

dependencies. Our analysis method is compatible with multiple programming languages since

LLVM supports a wide range of languages. For clarity purpose, in the following, we elaborate how

our algorithm handles complex predicates with specific examples using C-based programs.

Our case study of the ProFTPd DOP attack demonstrates that correlated branches are useful

for identifying incompatible branch behaviors. We want to point out that identify deterministic

relationships among correlated branches with arbitrary predicate expressions is a challenging

and unsolved problem. Here, we only identify coarse-grained correlated conditional branches that

have either direct or indirect joint data-dependency. Our purpose is mainly to characterize the

potential prevalence of branch correlation in benchmark programs, and motivate future research

on this interesting topic. As an assessment, we performed our branch correlation analysis on eight

programs. They include four Linux utility programs (flex, grep, gzip, sed) from the Software-artifact

Infrastructure Repository (SIR) [100] and four vulnerable programs (wu-ftpd, orzhttpd, ghttpd, sudo)
from the FlowStitch benchmarks [49].
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To capture coarse-grained branch correlations with arbitrary predicate expressions, we categorize

the correlated and data-dependent branches into three categories, including i) direct data-dependent
branches that share at least one common predicate variable; ii) indirect data-dependent branches
that use different predicate variables, but they are data-dependent on at least one common variable;

and iii) simple branches, where a branch predicate simply compares a variable with a constant

value, e.g., the conditional branches in lines 5 and 16 in Listing 1.

We developed a coarse-grained branch correlation analysis tool based on LLVM [68], which

identifies conditional branches that have joint data-dependency. Our tool handles inter-procedural
branch correlations and arbitrary predicate expressions. Table 2 shows the results of our coarse-
grained branch correlation analysis. Overall, 24% of the branches exhibit simple forms of conditional

predicates, and 18% of the branches with simple forms are correlated (including direct and indirect

correlations). For the direct correlations with simple forms (i.e., correlated branches use the same

predicate variable), we used the SMT logic solver Z3 [31] to determine any "subsume" or "mutually

exclusive" relationship. Our results show that for a limited number of branch correlations (around

2%), we can directly derive the deterministic correlation relationship (denoted as "directly derivable

simple BRs" in Table 2).

Table 2. Coarse-grained branch correlation analysis in benchmarks

Application Total BRs

Correlated

BRs

Simple BRs

Correlated

Simple BRs

Directly Derivable

Simple BRs

flex 1142 813 (71%) 557 (49%) 356 (31%) 62 (5%)

grep 1664 1456 (87%) 278 (17%) 216 (13%) 32 (2%)

gzip 737 533 (72%) 241 (9%) 169 (23%) 60 (8%)

sed 1081 1017 (94%) 172 (16%) 142 (13%) 12 (1%)

wu-ftpd 2781 1943 (70%) 688 (25%) 398 (14%) 84 (3%)

orzhttpd 35 23 (66%) 13 (37%) 7 (20%) 0 (0%)

sudo 675 499 (74%) 163 (24%) 116 (17%) 0 (0%)

ghttpd 107 90 (84%) 16 (15%) 11 (10%) 0 (0%)

Average 1028 77% 24% 18% 2%

We observed 77% of the branches have at least one correlated branch, i.e., given BR𝑖 , we can find at
least one branch BR𝑗 ≠ BR𝑖 , where BR𝑖 and BR𝑗 have joint data dependency. This result suggests the

prevalence of branch correlations with complex predicate expressions in a program, which can be

potentially used as checkpoints to detect incompatible branch behaviors (e.g., first using symbolic

execution or dynamic analysis techniques to identify deterministic relationships among these

correlated branches). Note that our analysis only captures the coarse-grained branch correlations as

opposed to the deterministic relationships among branches. However, it is nontrivial to derive the

deterministic relationship between inter-procedural correlated branches with complex predicate

expressions through static analysis. Accurate determining inter-procedural branch correlation can

be complicated, which involves comprehensive point-to analysis, value-flow analysis, and data-flow

analysis. Identifying deterministic relationships among correlated branches with arbitrary predicate

expressions is an interesting research problem, but it is beyond the scope of this work and thus we

leave it as future work.

4.4 Characterization of Frequency Anomalies
In frequency-based analysis, we discuss the impact of DOP attacks on two types of frequency

distribution, i) macro-level interaction frequencies and ii) micro-level control-flow frequencies.

4.4.1 Macro-level interaction frequencies. To observe interaction frequency anomalies under the

DOP attack, we derived the FTP commands sent from clients by tracing control-flow transfers of

the FTP command dispatcher function _dispatch in the ProFTPd server program. PT captures the

control-flow transfers from _dispatch to different command handlers, e.g., core_cwd indicates that

the command CWD (i.e., change working directory) has been received. For frequency distributions of
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normal operations (i.e., the baseline FTP interaction frequencies), we used the LBNL-FTP-PKT [63]

dataset. It contains all incoming anonymous FTP connections to public FTP servers at the Lawrence

Berkeley National Laboratory over a ten-day period, a total of 21,482 FTP connections. Each

connection session is considered as a behavior instance, and we extract FTP commands in each

connection from the dataset.

We computed the frequency distributions of 2-gram FTP command sequences. Each 2-gram

transition corresponds to a high-level execution feature. We applied the Principal Component

Analysis (PCA) technique for dimension reduction, as such a distribution-based profiling produces

a large number of features. We adopted the X-means clustering approach [81] to cluster all behavior

instances in baseline FTP command sequences, where the center of each of the X-clusters represents

a normal program execution context.
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Fig. 6. For macro-level interaction frequencies, 2-gram distribution of FTP commands within a connection
during the ProFTPd DOP attack.

Fig. 6 shows the macro-level frequency distribution of 2-gram FTP commands within a connection

during the ProFTPd DOP attack. Over the course of the attack, it involves more than 1,000 client-

server FTP commands. In contrast, the average interactions per session in the normal LBNL-FTP-

PKT dataset [63] is 41. Fig. 7 illustrates the X-clustering for 2-grams of FTP commands with PCA

reduction to 3-dimension. The DOP instance (i.e., red triangle) does not belong to any normal

clusters (i.e., blue dots). These results suggest that the client-server interactions under the DOP
attack drastically differ from the baseline executions.
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Fig. 7. For macro-level interaction frequencies, X-clustering for 2-grams of FTP commands with PCA reduction
to 3-dimension using LBNL-FTP-PKT dataset [63]. The ProFTPD-based DOP attack involves an abnormally
high number of client-server interactions.

4.4.2 Micro-level control-flow frequencies. Short control-flow paths may exhibit unusual execution

frequencies in data-oriented attacks. For instance, corrupting variables which directly or indirectly

control loop iterations can cause such frequency anomalies.

As mentioned in Section 2.4, changing the working directory (i.e., CWD command) triggers the

invocation of vulnerable sreplace function. In ProFTPd DOP attack, an attacker needs to craft
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.message files (i.e., as malicious payloads) to repeatedly fill up the allocated buffer buf and write

bytes beyond the buffer in sreplace, which exhibits anomalous behaviors of control-flow transfers

(i.e., significant frequency anomalies of control-flow transfers in sreplace). We defined all control-

flow transfers in each sreplace invocation as a behavior instance, following the approach in [96].

Since it is difficult to harvest .message files from old version FTP servers, in this experiment, we

randomly generated 1000 .message files without triggering the overflow as the baseline executions.

Given a new behavior instance (i.e., PT traces) observed in the detection phase, we measured the

distance between the new observation and each of cluster centers in the training dataset. If it does

not belong to any existing cluster (i.e., the distance is higher than a specified threshold of 30 unit

length), it is considered an anomaly. The ProFTPd DOP attack involves intensive interactions with

the server, which triggers more than 180 invocations of the sreplace function.
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Fig. 8. For micro-level control-flow frequencies, X-clustering for 2-gram control-transfers with PCA reduction
to 3-dimension in sreplace. The ProFTPD-based DOP attack exhibits a unique pattern of control-flow transfers
compared to baseline executions.

The feature extraction and dimension reduction procedures are similar to the macro-level anal-

ysis described above. After applying PCA, we reduced the original high-dimensional data to

3-dimensional data and then performed the X-clustering. Our result comparing the control-flow

frequency properties in sreplace is shown in Figure 8. The baseline dataset is clustered into 23

clusters. Similar to Figure 7, the DOP instance is an obvious outlier. BOP is likely to have a similar

type of frequency anomalies because BOPC typically utilizes multiple arbitrary memory read/write

primitives to modify the memory state of the target binary.

4.4.3 Limitation of control-flow frequency analysis. Though DOP attacks are expressive and po-

tentially powerful, they may manifest unusual control-flow behavior in different dimensions and

stages. In the above case study, we demonstrated the possibility of using PT-based program anomaly

detection to defeat DOP attacks. Since DOP attacks usually involve multiple-step data manipula-

tions, they are less evasive from detection than DDM attacks. Note that incompatible control-flow

paths may also result in frequency anomalies. Therefore, statistical modeling of control-transfers

has the potential to detect not only anomalous frequency of legitimate control-flow paths, but also

incompatible control-flow path anomalies in data-oriented attacks. It is not a DOP-specific and new

defense, but could be potentially applied to defend against data-oriented attacks [98]. However,

as many anomaly detection approaches [121], frequency analysis based detection is vulnerable to

defense-aware adaptive attacks, where an attacker may obscure control-flow frequency anomalies

by intentionally interleaving benign control-flows or slowing down the attack to evade detection.

Therefore, we consider control-flow frequency analysis as a complementary mitigation technique

to defeat data-oriented attacks.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Exploitation Techniques for Data-Oriented Attacks with Existing and Potential Defense Approaches* 111:29

5 CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES
In this work, we systematized the current knowledge of data-oriented exploits and applicable

defense mechanisms. We experimentally explored the possibility of using low overhead tracing

techniques, namely PT, for characterizing data-oriented attacks. We hope that this systematization

will stimulate a broader discussion about possible ways to defend against data-oriented attacks. We

highlight some interesting future directions in this area.

Automation of Small Footprint DOP Attacks. An interesting research direction is how to minimize

the footprints (i.e., side effects) of a DOP attack while achieving the same attack goal. Our experi-

ments in Section 4 showed that the DOP attack clearly exhibits some anomalies in the control-flow

behavior. It alters the correlation or statistical properties of control flows. DOP/BOP gadgets may

have different impacts on control-flow behaviors. Attackers may prefer data-oriented gadgets that

cause a minimum deviation from normal executions. Such a selection process requires automation

to be efficient. Besides automation, one also needs to define metrics to measure the footprints,

i.e., the amount of alteration caused by a DOP execution. Ispoglou et al. [54] made the first step

towards automating data-oriented programming through a powerful Block Oriented Programming

Compiler (BOPC). Searching for gadget chains under specific constraints is an interesting research

direction.

Assessment of Programs’ Susceptibility to Data-Oriented Attacks. Such a characterization – statically
or dynamically –would help one understand the threats that CFI cannot protect against. A promising

direction is to quantify the degree of control-flow decisions that are dependent on adversarially

controlled data (e.g., user input). Such a characterization also helps prioritize the defense effort,

enabling one to address programs with the highest susceptibility first.

Low False Positive PT-based Anomaly Detection. DOP attacks exhibit occasional anomalous execu-

tion behaviors at runtime, as we have demonstrated in Section 4. However, to design a successful

anomaly detection solution targeting DOP, much more work is needed. Specifically, one needs to

show the instruction-level detection does not trigger many false positives in normal executions.

Virtually all existing learning-based program anomaly detection demonstrations are at the higher

system-call and method-call levels. Reasoning instruction-level PT traces for anomaly detection is

challenging.

Deep Learning for Control-Flow Behavior Modeling. Non-control data violations may have impacts

on control-flows in different locations with long distances in a program. How to detect incompatible

control-flow paths, given a relatively long control-flow sequence, is challenging. Deep learning

techniques have shown promises in detecting anomalies in different applications. An interesting

research direction is to apply deep learning algorithms to model program behaviors for anomaly

detection. For example, Recurrent Neural Network (RNNs), especially Long Short-Term Memory

(LSTM) models, can be leveraged to capture temporal relation contained in univariate or even

multivariate data. Such techniques may have the potential to detect incompatible control-flow

paths given an extreme long control-flow sequence [70]. However, one challenge of the deep

learning based detection is the lack of labeled attack data given the difficulty to construct different

DOP/BOP exploits. In addition, attackers may exploit adversarial machine learning techniques to

evade detection by obfuscating control-flow behaviors under data-oriented attacks.

Anti-specification Database for Detecting Data-Oriented Attacks.Anti-specifications–a specification-
based technique that describes the violation of legal data flows–can aid the detection of data-oriented

attacks. Specifications are what a program should do, whereas anti-specifications [112] are what a

program should not do. Anti-specifications aim to capture events that may be part of an exploit.

For example, attackers trigger most exploits using unguarded external inputs. Anti-specifications

provide a characterization of the impact of a program’s use of unguarded external input on the
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downstream data-flow of the program. The impact analysis of a program’s external input is a

key step for preventing the gateways of data-oriented exploits. Besides, anti-specifications can

also capture input-dependent predicates used in loops or conditions. These controllable predicates

can alter program behavior. Other types of anti-specifications may capture data leaks [11] or

data pointer corruption. Thus, anti-specifications can help improve the detection of data-oriented

exploits by identifying the gateways and generic components used in those exploits.

One key benefit of anti-specifications is the construction of an anti-specification database.

This database is a collection of anti-specifications in a specific format, which helps screen pro-

grams against the anti-specifications stored in the database. It could also be used to generate

new anti-specifications by merging two or more anti-specifications. The key difference of this

anti-specification-based approach from a signature-based approach is that anti-specifications are

not specific to an exploit. The approach attempts to produce anti-specification by breaking an

exploit into its modular events or components and extracting anti-specifications from them. Even

though the same or similar exploits vary from one program to another, we may observe many

common components (e.g., exploit entry, gadget lookup, gadget stitching, and triggering) when

unfolding the exploits. As a result, anti-specifications built from such common components can be

more generally applied across multiple programs.
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