
MADELINE: Continuous and Low-cost Monitoring with Graph-free Representations
to Combat Cyber Threats

Wenjia Song
Virginia Tech

Hailun Ding
Rutgers University

Na Meng
Virginia Tech

Peng Gao
Virginia Tech

Danfeng (Daphne) Yao
Virginia Tech

Abstract—Advanced persistent threats (APTs) have caused
significant financial losses for enterprises, making the devel-
opment of effective detection systems a critical priority. While
existing provenance graph-based APT defenses demonstrate
high accuracy, the high complexity and cost of graph opera-
tions (e.g., construction, iteration) require extensive processing
time and computational resources, making them impractical
for real-time detection. To address this challenge, we introduce
MADELINE, a graph-free, lightweight APT detection system
that leverages historical system statistics. Through a multi-step
state score calculation for a set of behavioral attributes, MADE-
LINE meticulously captures subtle, gradual system changes
indicative of stealthy APT activities. Using an LSTM au-
toencoder, MADELINE performs anomaly detection effectively
without the need for prior knowledge or manual labeling of
attacks. Additionally, MADELINE supports continuous moni-
toring, enhancing the assessment of ongoing risks. This feature
helps reduce the need for extensive investigative resources by
prioritizing genuine high-risk periods. Our experiments show
that MADELINE achieves comparable detection accuracy with
the state-of-the-art APT detection, with 0.996 recall and 0.011
false positive rate on average. MADELINE also significantly
reduces the computational overhead, with over 1000x reduction
in processing time and 5x in memory utilization.

1. Introduction

Advanced persistent threats (APTs) have shown a no-
table escalation, causing unprecedented damage. For ex-
ample, the campaign conducted by Lazarus group in
2016 caused 81 million loss for the Central Bank of
Bangladesh [1]. APTs have also been responsible for signif-
icant data breaches across various organizations, including
Equifax [2] and the Personnel Management for the federal
government [3]. To defend against such threats, detections
using system audit logs have been widely developed to catch
malicious behaviors going on in the system [4], [5].

System audit logs record various ongoing tasks and are
great sources for threat hunting. The most popular APT
detection approach is to derive a provenance graph from
audit logs to analyze the causality of events. Provenance
graphs depict system execution using system entities (e.g.,
processes, files) as nodes and actions (e.g., open, read) as
edges. The dependency relationships between events can be

inferred from the graph. The extracted information is then
used to detect malicious behaviors at the edge or subgraph
level, using signature matching [6]–[9] or learning-based
methods [4], [5], [10]–[15]. For instance, HOLMES [6]
summarizes known attack patterns and flags any matching
behaviors. Unicorn [4] identifies abnormal system execution
state through encoded provenance graph.

However, while achieving promising accuracy, graph-
based analysis is also known to be complex and time-
consuming [10]. The reason is that analyses need to be
done at a fine-grained event level. Excessive investigative
time and resources are required to trace the relevant and
complex context of an event. As the system logs accumulate,
the size of the provenance graphs increases substantially,
taking a considerable amount of memory space (over 13GB
in our experiments). Recent research has shown that graph
generation accounts for more than 96% of the time required
for attack analysis [16], posing a big challenge to prompt
threat detection.

To enable lightweight real-time detection, we introduce
MADELINE, an efficient approach that utilizes system states
derived from historical statistics. As a graph-free framework,
MADELINE demonstrates remarkably reduced processing
time for audit logs and encapsulates the system state in
a highly condensed manner. The logs are first digested
state scores using historical behavioral distribution. Without
complex graph construction, statistics-based computation
executes very fast. Then, the model learns to reconstruct the
benign states and detect the states that deviate from benign.
This process does not require supervised learning and attack
knowledge. MADELINE further possesses a continuous mon-
itoring feature, which helps comprehensively understand the
risk over time and reduce false predictions.

One design requirement for using statistical methods
for anomaly detection is to effectively capture the system
states and reflect changes in behavior. System behaviors are
inherently complex and noisy, with many tasks going on
concurrently. With a vast amount of background activities,
small changes may be buried under voluminous benign logs.
It is critical to catch subtle yet abnormal patterns in system
states.

A further design goal is reducing false alarms, which
is critical for all threat detection systems. Existing works
filter false alarms by considering the anomaliness of related
events in provenance graph [11], [17]. For distribution-based

statistical models, when multiple tasks involve the same
system behavior (e.g., file read), its frequency may vary
and lead to an out-of-distribution score occasionally. Such
unexpected fluctuations need to be properly handled.

We summarize our new features and contributions as
follows:

• Efficient detection framework. We propose MADE-
LINE, a lightweight detection designed to respond
to advanced threats promptly. Research has shown
that a fast response to such attacks can significantly
reduce financial loss and help prevent future dam-
age [10]. We extensively evaluate MADELINE on 3
APT attack scenarios and 10 attack-free scenarios
from the DARPA OpTC dataset. MADELINE ef-
fectively detects all attack periods with an average
recall of 0.988 and a FPR of 0.03. MADELINE-
NCM further improves the recall to 0.996 and re-
duces the FPR to 0.011. We further compare MADE-
LINE with state-of-the-art APT detections. MADE-
LINE shows comparable accuracy and is significantly
more lightweight than graph-based solution, achiev-
ing over 1000x reduction in processing time and up
to 5.2x reduction in memory usage. This efficiency
improvement is due to the elimination of entity- and
event-level computations, which demand excessive
computational time and resources.

• Compact distribution-based state embedding. To ac-
curately represent the system state, we propose a
multi-step method leveraging historical system be-
havior distribution. It converts complex system states
to highly compact score vectors with minimal com-
putational overhead. To prevent log accumulation
during peak hours, we select sliding windows con-
taining a fixed number of logs. In this way, busy
hours with increased activities will be expanded into
more windows, enhancing the likelihood of detecting
subtle changes. We further normalize the occurrence
frequencies by the window size to reflect the ratio
of behaviors, depicting the relationship between dif-
ferent behaviors.

• Multi-attribute system representation. To mitigate
the risk of false positives from fluctuations in a
single behavior, we consider a collection of be-
havioral attributes and calculate a set of scores to
represent the overall system state. The anomaly de-
tection model receives the vector of scores as an
ensemble, learns the pattern across behaviors, and
thereby makes more informed predictions.

• Neighbor-based continuous monitoring. To enhance
the assessment of ongoing risk, MADELINE incor-
porates continuous monitoring that evaluates the
risk levels across successive time windows. Con-
secutive high-risk predictions are more indicative of
a truly high-risk period, whereas isolated anomaly
predictions may reflect unexpected fluctuations in
behavior. We introduce neighbor-based continuous
monitoring (NCM) which noticeably reduces false
alarms by 63%, saving time and resources spent on

Audit logs

Distribution-based state embedding

Anomaly prediction and continuous monitoring

System behavior
normalization

System state
score calculation

ML Model prediction Risk calculation

Low

High

Figure 1: Overview of MADELINE.

investigating each alert. As a result, security analysts
can concentrate on periods of genuine high risk.

2. Overview

In this section, we first describe the threat model. We
then give a motivating example and present an overview of
MADELINE.

2.1. Threat model

MADELINE aims to detect any abnormal behaviors that
leave a record in the system audit log. Activities that cannot
be captured by the audit logs are beyond the scope of our
study. We assume the integrity of the audit logs that 1) they
are not tempered or erased by any malicious actors to hide
their traces, and 2) the benign period used for model training
is attack-free.

2.2. Motivating example and security gap

We demonstrate the detection mechanism of MADELINE
using a simplified attack example from the DARPA OpTC
dataset [18].
Attack scenario. An enterprise has several endpoint ma-
chines running various routine tasks. One day, an attacker
sends spearphishing emails containing malicious attach-
ments named payroll.docx. A victim employee downloads
and opens the file and the attacker checks in. The attacker
first makes several attempts to modify the registry and sets
persistence in the host to check back consistently. Then,
they enumerate the files and search for “important, secret,
classified” keywords to collect host information. Finally,
they compress files in C:// documents for exfiltration.
Detection by MADELINE. MADELINE identifies system
changes using behavioral statistics. At the beginning of
the attack, as the attacker attempts to establish persistence,
the proportion of registry-related activities tends to increase
abnormally. Subsequently, during file exfiltration, compres-
sion will also exhibit distinct file operation patterns. For
instance, file read increases during information gathering

Figure 2: Behavior ratio of DARPA OpTC host 0501 during benign
and attack periods. We only show 6 attributes in this figure to
illustrate the idea. Calculation details are in Section 3.

and file compression (Figure 2). Variations in these oper-
ations will affect the ratio of other behaviors to varying de-
grees, collectively indicating a change in the system. When
these abnormal states are compared to the historical system
state distribution, they will receive an out-of-distribution
score, which the anomaly detection model can flag later.
Investigative resources can be conserved by prioritizing the
analysis of these high-risk periods. Since MADELINE only
relies on counting behavior frequencies and calculating state
scores using statistical models, the computational overhead
is minimal. This allows detection to occur within seconds
even for large volumes of system logs, thus enabling real-
time threat detection. Moreover, storing historical system
behaviors as state scores consumes minimal space, requiring
only a few megabytes for days of events. MADELINE can
also complement existing fine-grained analysis approaches.
Limitations of existing solutions. Existing graph-based
solutions [4]–[6], [19] require significant analysis time and
computational resources, making prompt detection and re-
sponse challenging. This is because event-level detection
requires investigating every single event and its dependen-
cies. To expedite the analysis, some approaches utilize multi-
threading [5], [19], which may consume substantial compu-
tational power and potentially slow down other tasks. In this
attack example, suspicious events include abnormal process
creation from malicious file, unusual reads of files by un-
known processes, and suspicious file creations by unknown
processes. To pinpoint these events or the trace containing
them, each event needs to be indexed and linked, while
massive iterations are needed to trace event context. This
results in substantial storage, memory, and computational
overheads. Additionally, historical graphs often cannot be
deleted because future anomaly scores may depend on them.
We experimentally confirm the significant time and memory
utilization reduction of MADELINE in Section 4.

2.3. Overview of MADELINE

We propose MADELINE, a threat detection leveraging
system state computed based on historical statistics, re-
quiring no supervised learning. MADELINE consists of two
major steps: 1) distribution-based system state embedding,
and 2) anomaly detection and risk evaluation (Figure 1).

To capture system state information in a condensed way,
we first convert the audit logs to vectors with statistics
of various behaviors. Each vector represents a short time
window. When historical data accumulates, we can deduce
a distribution and infer where a newly observed state falls in
this distribution. Each behavior attribute has its own score,
and together they represent the state of the current system.
Then, an LSTM-autoencoder will learn to reconstruct the
state score for a few consecutive time windows. The model
is trained on only benign data. As a result, states close to
observed normal data will have a lower reconstruction error,
whereas states that deviate from normal will have a higher
error.

The key idea behind our design is to let the model learn
the relationship between each attribute in a time window
and how this relationship changes over time across multiple
time windows. Even though system behaviors could be
complex and noisy, system states should reasonably repeat
themselves during regular routines. Changes in one or more
behavior attributes will make the calculated state deviate
from the benign distribution. Log entries (i.e., activities)
often do not follow a strict temporal order due to concurrent
tasks and multithreading. Our design considers the activities
accumulated during a time window, also helping reduce the
impact of this variance.

3. Design of MADELINE

We detail the design of each phase below. Distribution-
based system state embedding converts complex system
states into score vectors. Benign behavior learning and
anomaly prediction involves training the model using histor-
ical normal behaviors and identifying abnormal states based
on the model’s output. Continuous monitoring facilitates an
enhanced assessment of ongoing risk.

3.1. Distribution-based system state embedding

The goal of the phase is to convert the system state to
a compact vector representation (embedding).
Behavior attribution. First, MADELINE takes the audit log
as input and categorizes the log entries by the action and
related object. We consider one type of event, which is
combination of object and action, as one attribute (e.g.,
PROCESS OPEN, FILE CREATE).
Behavior normalization. For a fixed-size window (e.g.,
10,000 log entries), we count each attribute’s frequency and
normalize the frequencies by the total number of actions.
That is, for each selected attribute i,

freqi =
occurrences of attributei

length of window
(1)

The calculated frequencies of all attributes form a vector,
representing the activities happening in this time window.
The fixed-sized window design helps us catch subtle changes
during peak hours.
State score calculation. We then compute a score for
each attribute utilizing historical data. After computing the

Figure 3: A simplified example of our MADELINE embedding
(system state scores) computed from the DARPA OpTC dataset.
The example shows 5 windows, each with 12 attribute scores.

frequency vectors for a few time windows, we can form
distributions of each attribute’s frequency from past data.
When given a new behavior frequency vector, the probability
of each value happening can be induced from its historical
distribution. Then, we use the cumulative distribution func-
tion (CDF) to calculate this probability for each attribute in
the vector.

score = 1− P (µ − diff < X < µ + diff)
= 1− (FX(µ + diff)− FX(µ − diff))

(2)

where X represents the distribution of the normalized be-
havioral frequency, µ is the distribution mean, diff is the
difference between µ and the newly observed behaviroal
frequency data point d:

diff = |µ− d| (3)

FX is the CDF of X:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt (4)

and fX is the probability density function (PDF) of X:

fX(x;µ, σ) =
1

σ
√
2π

e−
1
2 (

x−µ
σ)

2

(5)

with σ being the standard deviation (std). The integral
from negative infinity (Equation 4) computes the cumulative
probability of a point falling below the upper bound. By
subtracting the lower bound’s cumulative probability from
that of the upper bound (Equation 2), our attribute score
quantifies the likelihood of the newly observed frequency
deviating this far from the distribution mean.

Calculating these scores for the attributes generates
a new vector representing the system state. Beyond the
attribute relationship represented in the frequency vector,
the state scores further encode information from the past,
capturing the changing pattern of system behaviors. The
score vectors are then used in the next step as the input
for learning the anomaly detection model. We refer to the
state score vectors as MADELINE embedding. Compared
to existing embedding methods, such as word2vec [20]
and log2vec [21], MADELINE relies solely on statistical
models and does not require training, thus enabling rapid
computation.

Figure 4: Illustration of the 3 LSTM reconstruction modes.

3.2. Benign behavior learning and anomaly predic-
tion

This phase contains two steps. One is benign behavior
learning, which aims to learn a model that accurately re-
constructs the historical system state. The other is anomaly
prediction, with a goal to identify abnormal system states
from model predictions.
Benign behavior learning. We choose an LSTM autoen-
coder as our anomaly detection model. LSTM is known
for its capability of handling sequential time series and
the autoencoder enables learning without attack labels. This
design, without supervised learning, helps address the chal-
lenge of the limited availability of attack data for training in
a realistic setting. Compared to advanced Transformer-based
models, LSTM has fewer parameters and requires less time
for training. The model is implemented using an encoder-
decoder LSTM architecture. We train the model with the
previously computed state scores to learn the normal system
state by a reconstruction task. The input is a few consecutive
state score vectors and the learning goal is to minimize the
difference between the recreated vectors and target vectors.
The difference is measured by mean square error (MSE),
which is used as the loss function. Specifically, we provide
3 reconstruction modes (Figure 4):

Self-reconstruction. In this mode, the model learns to re-
construct the input. The model reads the state score vectors,
encodes them, decodes them, and tries to reconstruct them.
That is, the model only handles the current system state.

Next-step reconstruction. In this mode, the decoder is
modified to create the state vectors following the input. The
model parses the current system state and is asked to predict
the state for subsequent time windows.

Composite setting. In this mode, we combine self-
reconstruction and next-step reconstruction with 2 decoders.
One decoder is responsible for reconstructing the input
and the other for recreating the next steps. Model’s output

includes both the reconstructed current state and the subse-
quent state.

Unlike existing LSTM-based anomaly detection meth-
ods, such as DeepLog [22], which can only handle a finite
set of events, MADELINE can flexibly encode and learn
system states from infinite combinations of behaviors.
Anomaly prediction. Next, we interpret the prediction to
detect anomalies in system state. Each sliding window re-
ceives a separate security decision. We calculate the recon-
struction error to quantify the deviation from normal. The
reconstruction error is calculated as the mean absolute error
(MAE) between the target vectors and the reconstructed
vectors element-wise. The MAE for m time windows with
n features are shown in Equation 6.

MAEm =

m∑
i=1

1

n

n∑
j=1

|tij − rij | (6)

Here, t and r represent the target and reconstruction vectors,
respectively. tij and rij represent the jth element in the ith
time window in t and r, respectively.

If the reconstruction error exceeds a pre-determined
threshold, then the window is flagged as abnormal (positive);
otherwise, it will be labeled as normal (negative).

prediction =

{
positive (abnormal), if MAE > th

negative (normal), otherwise
(7)

We select a decision threshold that is 2 standard deviations
from the distribution mean (Equation 8) following the 68-
95-99 rule, that is, theoretically, 95% of data from the same
distribution should fall within this range.

th = µ+ 2σ (8)

Here, µ is the distribution mean and σ is the standard
deviation. The threshold is determined on the validation set.

3.3. Continuous monitoring and MADELINE-NCM

Continuous monitoring is critical for defending against
APTs because of their low-and-slow characteristics. The
goal is to support a more comprehensive understanding of
ongoing risk by providing context to a specific decision.
False alarms or miss detections are unavoidable due to the
complex nature of system behaviors. For instance, when
various tasks run simultaneously during heavy usage time,
an unexpected ratio of behavioral attributes may appear in
a sliding window and consequently lead to an alarm. This
false prediction could be reduced by inspecting the risk level
of adjacent periods. If the risk level is continuously low,
investigative efforts can be prioritized to other higher-ranked
alarms.

Adapting this idea, we further introduce a neighbor-
based continuous monitoring (NCM) feature. This feature
helps reduce false positives and missed detection by con-
sidering the predictions on consecutive windows and taking

Figure 5: An example of using our neighbor-based continuous
monitoring (NCM) feature to refine the prediction result.

the majority vote. Given target window wi and a neighbor
size b, the decision for wi becomes

DNCM (wi) = mode{D(wi+k) | k ∈ [−b, b], 0 ⩽ i+k ⩽ e}
(9)

where D is the decision of a window w and e is the ending
index of currently available predictions.

We refer to the model incorporating this feature as
MADELINE-NCM. Figure 5 shows a simple example, in
which the prediction result of a particular time window
(false positive) is replaced with the predominant vote among
its neighbors.

4. Experimental Evaluation

We conduct extensive experiments in evaluating the effi-
cacy and efficiency of MADELINE as a detection system. In
particular, we investigate and aim to answer the following
questions:
RQ1. How effective is MADELINE in detecting advanced
threats in different attack scenarios? (Section 4.1)
RQ2. How do MADELINE compare with the state-of-the-
art threat detection methods in terms of accuracy, training
and prediction time, and computational resource utilization?
(Section 4.2)
RQ3. How do different design choices impact the detection
efficacy of MADELINE? (Section 4.3)
RQ4. How would continuous monitoring help reduce false
alarms? (Sections 4.1 and 4.2)

We first evaluate the efficacy of MADELINE on 3 differ-
ent APT attack scenarios and 10 attack-free scenarios from
a large-scale DARPA dataset. We show that MADELINE
effectively detects the attack periods with very few posi-
tives. We further compare MADELINE with 3 state-of-the-art
APT detection approaches. The results show that MADE-
LINE achieves comparable accuracy with the state-of-the-
art solutions. We further compare the computation time and
resources needed with graph-based solution KAIROS [5],
demonstrating our advantage in lightweight online detection.
We then conduct a comprehensive ablation study and discuss
the impact of various design choices on the performance of
MADELINE.
Experimental setup. All experiments are performed on a
machine with Intel Core i7 11700K CPUs @ 3.6GHz, 64 GB
memory, and an NVIDIA GeForce RTX 3090 GPU. We use
Ubuntu 22.04 LTS as the operating system. Unless otherwise
specified, we use an LSTM model with an encoder-decoder
structure, optimized by Adam optimizer. The encoder con-
tains 2 layers with 64 and 128 units, respectively. The de-

coder contains 2 layers, with 128 and 64 units, respectively.
We implement our models in Python using TensorFlow. The
statistical models and scores are computed using Scipy. We
use a sliding window size of 10,000 and a stride of 1000.
For the LSTM self-reconstruction setting, we use an input
and output size of 5 (i.e., 5 sequential score vectors). For
the next-step reconstruction setting, we use an input size of
5 and an output size of 3. For the composite setting, we use
an input size of 5, and output sizes of 5 (self-reconstruction)
and 3 (next-step reconstruction) for the two decoders. We
use recall and false positive rate (FPR) as evaluation metrics.
Datasets. We use 2 datasets for our evaluation. We release
our pre-processed data and intermediate results1.

DARPA OpTC. The DARPA Operationally Transparent
Cyber (OpTC) [18] is a large-scale APT dataset containing
log records for both benign and red-team simulated mali-
cious activities. This dataset was collected in 2019 from
around 1000 Windows 10 hosts. It describes both a benign
period (September 17-23) and an attack period (September
23-25). During the attack period, the red team injected mali-
cious behaviors with benign background activities running.
A summary of the attack scenarios is shown in table 11.
The data is publicly available in eCAR format as JSON
files [23].

StreamSpot. The StreamSpot [24] dataset consists of
data derived from 1 attack and 5 benign scenarios. The
benign scenarios depict normal activities, such as browsing
YouTube and playing video games. The attack involves a
drive-by download triggered by visiting a malicious URL.
For each scenario, 100 tasks were automatically executed
on a Linux machine.

4.1. RQ1: Recall and FPR of MADELINE

We evaluate MADELINE on both attack scenarios and be-
nign scenarios from the DARPA OpTC dataset. The results
suggest that MADELINE can effectively detect malicious
periods. We use 4 attacked hosts from all 3 attack scenarios
and 10 randomly selected benign (i.e., attack-free hosts) to
test the number of false alarms generated by MADELINE.
For attacked hosts, we save the last benign period as valida-
tion and testing sets and use the rest as our training set.
We label the data during the corresponding attack times
in their evaluation directory as attack logs for evaluation.
One thing worth noting is that we label the entire attack
period as positive instead of labeling individual events (i.e.,
single log entries) because of the nature of our lightweight
coarse-grained online detection. For attack-free hosts, we
use a similar training and validation setting, with data from
the day 1 attack period as testing. Because these hosts are
not the target of the red team, there should be only benign
background activities running even during the attack time.
We use those data to extensively test the amount of false
alarms generated by MADELINE.

For the DARPA OpTC dataset, we select 12 attributes
from 3 different categories, namely file, process, and registry

1. https://github.com/wenjia7/madeline

TABLE 1: Attributes selected for DARPA OpTC dataset.

Category Attributes

FILE
FILE-CREATE, FILE-DELETE,
FILE-MODIFY, FILE-READ,
FILE-WRITE, FILE-RENAME

PROCESS PROCESS-CREATE, PROCESS-OPEN,
PROCESS-TERMINATE

REGISTRY REGISTRY-ADD, REGISTRY-EDIT,
REGISTRY-REMOVE

(Table 1). We select those categories as they cover a wide
range of adversary enterprise tactics, including Execution,
Persistence, Privilege Escalation, Discovery, Lateral Move-
ment, Collection, and Exfiltration [25]. Each attribute is a
combination of an object and an action. We then calculate
the frequency of each attribute and subsequently the state
scores. A simplified input embedding example of input size
5 is shown in Figure 3.
Evaluation on APT attack scenarios. Tables 2 and 3
show a summary of the results on 4 attack hosts. The
distributions of reconstruction errors are shown in Figure 6.
We observe that, in all cases, benign and attack data show a
good separation, achieving good recall and low FPR. Specif-
ically, self-reconstruction and composite settings achieve an
average recall of over 0.98 and an average FPR as low as
0.03. The composite setting shows slightly better separation
between benign and attack compared to the reconstruction
setting. Next-step reconstruction has a slightly lower recall
at 0.93. One possible reason for the small number of missed
detections is that, due to the complex nature of system
behaviors, the scores of a few windows may fall in the
normal range. Similarly for false alarms. We further show
that missed detections and false alarms can be remarkably
reduced with our continuous monitoring feature (Tables 2
and 3).

Self-construction setting approaches the performance of
composite setting but requires less training time, making
it a practical choice for most scenarios. However, when
optimal accuracy is important, composite setting becomes
a preferable option.

TABLE 2: Recall of MADELINE on attack scenarios from DARPA
OpTC dataset with and without our neighbor-based continuous
monitoring (NCM) feature (neighbor size 5). NCM improves recall
in all cases.

Self-
reconstruction

Next-step
reconstruction Composite

Host - NCM - NCM - NCM
0051 1.000 1.000 0.980 0.996 1.000 1.000
0501 0.971 0.985 0.759 0.768 0.980 1.000
0660 1.000 1.000 0.963 1.000 1.000 1.000
0201 0.979 1.000 1.000 1.000 0.991 1.000
avg 0.988 0.996 0.926 0.941 0.993 1.000

Evaluation on benign scenarios. We randomly select 10
attack-free hosts from DARPA OpTC dataset to further
test the number of false alarms MADELINE generates. The
findings indicate that, in addition to effectively detecting

(a) SR host 0051 (b) SR host 0501 (c) SR host 0660 (d) SR host 0201

(e) NR host 0051 (f) NR host 0501 (g) NR host 0660 (h) NR host 0201

(i) CO host 0051 (j) CO host 0501 (k) CO host 0660 (l) CO host 0201

Figure 6: Distribution of data reconstruction errors on attack scenarios from DARPA OpTC dataset (SR for self-reconstruction, NR for
next-step reconstruction, CO for composite).

TABLE 3: FPR of MADELINE on attack scenarios from DARPA
OpTC dataset with and without our neighbor-based continuous
monitoring (NCM) feature (neighbor size 5). NCM reduces FPR
in all cases.

Self-
reconstruction

Next-step
reconstruction Composite

Host - NCM - NCM - NCM
0051 0.005 0.000 0.029 0.000 0.011 0.000
0501 0.000 0.000 0.000 0.000 0.000 0.000
0660 0.019 0.000 0.039 0.000 0.049 0.000
0201 0.095 0.043 0.096 0.049 0.087 0.046
avg 0.030 0.011 0.041 0.012 0.037 0.012

abnormal behaviors within the system, MADELINE also suc-
cessfully maintains a minimal rate of false alarms (Table 4
and Figure 11 in appendix).

TABLE 4: FPR of MADELINE on attack-free scenarios from
DARPA OpTC dataset. SR for self-reconstruction, NR for next-
step reconstruction, CO for composite.

Host SR NR CO Host SR NR CO
0070 0.042 0.000 0.000 0470 0.011 0.004 0.019
0101 0.028 0.051 0.044 0607 0.031 0.021 0.016
0307 0.022 0.000 0.011 0720 0.000 0.000 0.000
0455 0.000 0.028 0.000 0771 0.000 0.008 0.000
0468 0.012 0.012 0.012 0860 0.040 0.005 0.082

avg 0.019 0.013 0.018

4.2. RQ2: Comparison with state-of-the-art detec-
tions

We compare MADELINE with state-of-the-art advanced
threat detections, evaluating detection accuracy, processing
time, and computational resource utilization. We observe
that MADELINE achieves comparable accuracy and is sub-
stantially more lightweight and faster than graph-based so-
lutions.
Comparison of detection accuracy. We evaluate MADE-
LINE on the StreamSpot dataset and compare state-of-the-art
anomaly detection systems, including StreamSpot [24], Uni-
corn [4], and Kairos [5]. We choose StreamSpot dataset [24]
for comparison because it provides an isolated attack sce-
nario, ensuring compatibility of the attack label across var-
ious detection tools. While large APT datasets, such as
DARPA OpTC, depict more advanced threats, the attack
labeling process may vary from work to work depending
on their attack analysis strategies and granularity. Therefore,
although StreamSpot contains a relatively simple attack, it
facilitates a more straightforward and fair comparison.

We train separate models using each benign scenario
and a combined model using all 5 benign scenarios. In each
setting, we use 80% data as the training set, 10% as the
validation set for threshold selection, and 10% as the benign
testing set to assess the FPR. Then, each trained model is
evaluated against the attack scenario to determine recall.

Similar to our previous design, we choose attributes from
file and process categories. The StreamSpot dataset does not

have any registry-related objects as it was run on a Linux
machine. The 26 selected attributes are shown in Table 14
in the appendix.

A summary of MADELINE’s performance is shown in
Table 5. MADELINE performs consistently well on all sce-
narios except for the GMail one. The GMail scenario has a
notably small data size, which is only 36% of the Download
scenario and 27% of the CNN scenario. This small data
size may be inadequate for the deep learning model to
effectively learn, leading to relatively high reconstruction
errors for some benign time windows and subsequently
a higher decision threshold. The prediction distribution is
shown in Figure 12 in appendix.

TABLE 5: Performance of MADELINEon StreamSpot dataset.

Self-
reconstruction

Next-step
reconstruction Composite

Scenario Recall FPR Recall FPR Recall FPR
YouTube 1.000 0.003 0.984 0.025 1.000 0.000

GMail 0.537 0.081 0.615 0.061 0.947 0.037
VGame 1.000 0.002 0.964 0.010 1.000 0.000

Download 1.000 0.032 0.947 0.039 1.000 0.037
CNN 1.000 0.032 1.000 0.031 1.000 0.022
All 1.000 0.033 0.976 0.028 1.000 0.021
avg 0.923 0.031 0.914 0.032 0.991 0.020

We compare with the state-of-the-arts on the combined
scenario (i.e., using combined data from the 5 benign sce-
narios for training). The results are presented in Table 6.
MADELINE shows comparable detection accuracy. Next, we
further show that MADELINE is notably more lightweight in
terms of processing time and computational resource usage.

TABLE 6: Comparison of detection accuracy with state-of-the-art
on StreamSpot dataset. The performance of StreamSpot [24] and
Unicorn [4] are reported in the original Unicorn paper [4]. The
performance of Kairos is reported in the original Kairos paper [5].
The performance of FLASH is reported in the original FLASH
paper [14]. The Performance of THREATRACE is reported in the
original THRATRACE paper [26]. Performance of MADELINE is
based on the self-reconstruction setting. NCM refined performance
uses a neighbor size of 5.

Recall FPR Accuracy
StreamSpot N/A N/A 0.660
UNICORN 0.930 0.020 0.940
KAIROS 1.000 0.000 1.000
FLASH 0.960 0.000 0.960

THREATRACE 0.990 0.004 0.990
MADELINE (ours) 1.000 0.033 0.979

MADELINE-NCM (ours) 1.000 0.004 0.997

Comparison of processing time and resource utilization.
We compare MADELINE’s processing time and memory
utilization with state-of-the-art detection Kairos [5] on the
DARPA OpTC dataset. Because Kairos uses a multi-host
training setting, we consider MADELINE’s training and eval-
uation time for all 4 hosts together for a fair compari-
son. We follow the implementation of Kairos available on
GitHub [27]. Besides training and prediction, Kairos has
an extra step of calculating each node’s inverse document

(a) Average memory usage (b) Peak memory usage

Figure 7: Comparison of memory usage with Kairos [5] on DARPA
OpTC dataset.

frequency (node IDF) for anomalous score evaluation. We
report this part as other parameter calculation (labeled as
other param in Table 7 and Figure 7). Both sets of exper-
iments are conducted on the same machine as described
previously.

Due to the ability of MADELINE to efficiently condense
the system state into a few score vectors, both the training
and prediction phases are executed very fast. A breakdown
of the processing time needed for each stage is shown
in Table 7, and memory utilization is shown in Figure 7.
MADELINE achieves over 1000x speed up in detection
processing time in total and up to 5.2x reduction in memory
utilization. This efficiency improvement is because of the
fact that fine-grained detection at the node and edge level
requires extensive computational effort. Specifically, in the
case of Kairos, each node must be checked against every
event in all preceding time windows to assess the node’s
rarity and, subsequently, to determine the benignness of
future events involving this node. While providing fine-
grained information for attack flow reconstruction, the sub-
stantial amount of processing time significantly increases
the difficulty of deploying graph-based detection as a real-
time solution. Although MADELINE presents coarse-level
prediction over time intervals, its fast reaction allows early
intervention in response to attack behaviors. It is important
to note that MADELINE can also serve as a complement
to existing fine-grained analyses, helping prioritize the in-
vestigation on high-risk time intervals, thereby conserving
time and reducing manual efforts. A detailed use scenario
is further discussed in Section 5.

TABLE 7: Comparison of processing time with Kairos [5] on
DARPA OpTC dataset.

Train Other
param

Predict/
Evaluate Total

MADELINE
(ours) 48s N/A 4s 52s

Kairos 229m50.2s 797m18s 65m12s 1092m20s

4.3. RQ3: Ablation study

We then analyze the influence of various design choices
using the self-construction setting on attack scenarios from
the DARPA OpTC dataset. We independently adjust one de-
sign choice at a time to examine its impact on MADELINE’s
performance. We discuss the findings below.

Decision threshold. We choose the default decision thresh-
old as 2 stds from the mean (Equation 8) following the
68-95-99 rule of normal distribution. Next, we examine
the impact of selecting different thresholds. Table 8 shows
the experimental results. Shifting the threshold to the left
enhances sensitivity to abnormal data, thereby increasing
both the recall and the FPR. Using 1 standard deviation
from the mean as the threshold, the FPR increases by 5
times. On the other hand, shifting the threshold to the right
lowers the sensitivity, reducing the value of both metrics.
Using 3 standard deviation from the mean as the threshold,
the average recall drops to 0.85. Those numbers show that
2 stds from the mean achieve a good balance.

TABLE 8: Comparison of decision thresholds on reconstruction
error.

mean + 1 * std mean + 2 * std
(default) mean + 3 * std

Host Recall FPR Recall FPR Recall FPR
0051 1.000 0.068 1.000 0.005 0.904 0.000
0501 1.000 0.148 0.971 0.000 0.862 0.000
0660 1.000 0.154 1.000 0.019 0.985 0.000
0201 1.000 0.243 0.979 0.095 0.654 0.000
avg 1.000 0.153 0.988 0.030 0.851 0.000

Input size. Input size refers to the number of steps (i.e.,
continuous time windows) we feed into the LSTM autoen-
coder models. Figure 3 shows an example of input size 5.
Increasing this size provides more context for the models
to learn, at a cost of slightly elevated training time. A
comparison of 3 different input sizes is shown in Table 9.
An input size of 5 achieves good performance while further
increasing the size trivially improves it.

TABLE 9: Comparison of reconstruction sizes on attack scenarios.

Input size 3 Input size 5
(default) Input size 8

Host Recall FPR Recall FPR Recall FPR
0051 0.896 0.017 1.000 0.005 0.984 0.006
0501 0.954 0.056 0.971 0.000 0.973 0.000
0660 1.000 0.038 1.000 0.019 1.000 0.029
0201 0.887 0.107 0.979 0.095 1.000 0.081
avg 0.934 0.054 0.988 0.030 0.989 0.029

Sliding size. This value determines the number of logs
included in one single sliding window. A small sliding size
records a shorter period and provides us with more data
points at the time of investigation. However, a size that is
too small allows limited context in one window, possibly
making the scores fluctuate a lot and thus hard for the
model to learn. A balance needs to be established between
these two aspects. We compare 5 sliding sizes on 2 attack
scenarios (Table 10). We find that small sliding sizes (e.g.,
5000 and 8000) result in an obvious overlap of benign and
attack data and subsequently low recall. Larger sizes starting
from 10,000 give a good separation. Increasing the sliding
window size further from 10,000 trivially improves the recall
and slightly lifts the FPR. Thus, we select 10,000 as the
default size.

TABLE 10: Comparison of sliding window sizes on attack scenar-
ios.

Host 0051 Host 0501Sliding size Recall FPR Recall FPR
5000 0.102 0.006 0.670 0.000
8000 0.542 0.000 0.895 0.034

10000 (default) 1.000 0.005 0.971 0.000
15000 1.000 0.029 0.956 0.035
20000 1.000 0.012 0.998 0.024

State score calculation. We explore a few alternative meth-
ods for calculating the state scores. An alternative way
of normalizing the frequency is to divide each attribute’s
frequency by the total number of entries in its category. We
refer to this setting as categorical normalization. For state
score calculation, besides using the single attributes, we also
investigate alternatives using joint attribute distributions with
2 or 3 attributes. Formulas used in these alternative methods
are discussed in the appendix.

We visualize the distribution of benign and attack scores
calculated by various methods using a PCA analysis (Fig-
ure 8). Scores calculated using the default normalization and
single attribute distribution show the best separation between
benign and attack data (Figure 8a). Scores calculated using
the default normalization and joint distribution of multiple
attributes also show good separation, with some overlap
on the boundary (Figures 8b and 8c). Attack data points
lay in the middle of benign points when using normalized
frequencies without state score calculation (Figures 8d and
8h). Scores calculated based on categorical frequencies (Fig-
ures 8e, 8f, and 8g) exhibit large overlap between benign
and attack data.

Moreover, calculating joint distribution requires signifi-
cantly more time than calculating single attribute distribution
(23% slower for 2 attributes and 58 times slower for 3
attributes on average). Therefore, we use scores based on
single attribute distribution for our method.
Anomaly detection model. We test the efficacy of one-
class support vector machine (OC-SVM) and autoencoder
as the anomaly detection model. The autoencoder evaluated
in this section is a regular one without LSTM layers. We
show the average performance on the 4 attacked hosts from
the DARPA OpTC dataset.

For OC-SVM, we find that no single setup works for
all scenarios. Detailed results are shown in Table 12 in the
appendix. Using a linear kernel function and setting the
hyperparameter nu at 0.95, the model performs well on Host
0051, but does not achieve this success across other hosts. A
similar pattern is observed with other fixed configurations.
We further conduct a grid search of 76 configurations to
confirm this pattern. The 76 models are all possible com-
binations of 4 kernel functions (radial basis function (rbf),
linear function, polynomial function, and sigmoid function)
and a nu value from 0.05 to 0.95 with a 0.05 increment.
Although we find that there is at least one configuration
performs well on each attack scenario, the fatal issue is that
attack knowledge is required to select a model with good

(a) state scores using single at-
tribute distribution

(b) state scores using joint dis-
tribution (2 attributes)

(c) state scores using joint dis-
tribution (3 attributes)

(d) percentage of attributes (no
score calculation)

(e) state scores using single
attribute distribution (categori-
cal)

(f) state scores using joint dis-
tribution (2 attributes, categor-
ical)

(g) state scores using joint dis-
tribution (3 attributes, categor-
ical)

(h) percentage of attributes
(no score calculation, categori-
cal)

Figure 8: PCA analysis of benign and attack data of host 0051.

Figure 9: Performance comparison with OC-SVM and autoencoder
as baselines. Linear stands for linear kernel, poly for polynomial
kernel, 0.95 and 0.7 are values for the nu parameter. MADELINE’s
performance is based on the self-reconstruction setting.

recall. In a realistic setting, attack data is unlikely to be
available at the model development stage.

For autoencoder, we test its performance using an input
size of 1 (i.e., one time window) and an input size of 5 (i.e.,
5 consecutive windows). Table 13 in the appendix shows
the results. Input size 1 yields a recall of only 0.30 and
input size 5 improves it to 0.83. The low performance of
autoencoder could be because of its incapability of handling
time sequence time, capturing irrelevant associations among
random input elements yet failing to learn the crucial tem-
poral relationships between scores.

We summarize our major experimental findings as fol-
lows:

• MADELINE effectively detects all 3 APT scenarios
on 4 different hosts from the DARPA OpTC dataset,
with a recall of 0.988 and a FPR as low as 0.03.

• MADELINE-NCM further enhances the detection re-
call and reduce the FPR in all scenarios. Specifically,
it lowers the FPR by 63% for the detection on the
DARPA OpTC dataset.

• As a lightweight real-time detection, MADELINE is
remarkably more time- and resource-efficient than
graph-based solutions, achieving over 1000x reduc-
tion on processing time and 5x reduction in memory
usage while showing comparable detection effective-
ness with state-of-the-art.

• MADELINE’s anomaly detection model LSTM au-
toencoder outperforms other baseline models. It out-
performs the best OC-SVM and autoencoder by 5%
and 19%, respectively, in terms of recall. It also
shows 32% and 23% lower FPR when compared
with these two baselines.

5. Discussion

Prediction explainability. Beyond simply making a binary
decision on each time window, MADELINE also offers in-
sights into potential malicious behaviors. We infer the top
abnormal attributes and category by inspecting the individ-
ual reconstruction error of each attribute (Figure 15 in the
appendix). Figure 10 correlates the identified top abnormal
categories with ground truth attack behaviors on host 0501
from the DARPA OpTC dataset as an example. The top
abnormal category is registry when the red team attempted
to modify the registry and establish persistence. When data
exfiltration occurred, the file category was identified as the
most abnormal. Security analysts can utilize this information
and focus on top abnormal behaviors, thereby enhancing
efficiency. Note that exact correspondence between the pre-
dictions and the actual attack is not always guaranteed.
One possible reason is the slight misalignments between the
attack records logged by the red team and the system logs
collected by other teams, while another reason could be our
statistical model needs the logs to accumulate to a detectable
state change. Despite that, the insights remain valuable for
understanding the attack dynamics. For instance, a sequen-
tial pattern of [process → registry → file] might indicate

suspicious processes being created for persistence establish-
ment and file manipulation, which can be compared against
known attack patterns to identify potential threats.

Attack log
(host 0501, Sept 24)

Madeline
Predicted top anomaly category

Figure 10: Attack log for red team activities on host 0501 from
DARPA OpTC dataset and top abnormal categories for correspond-
ing prediction windows predicted by MADELINE.

Use scenario. In addition to being effective as a standalone
detection system, MADELINE can serve as an initial layer
of defense within a comprehensive APT investigation and
response framework, complementing more detailed attack
analyses. Figure 14 in the appendix presents an overview of
the entire investigation workflow. Once a risk is verified,
high-risk periods can be forwarded to further inspection
through entity- and event-level log analyses (such as graph-
based [5] and embedding-based [16] analyses) to precisely
identify attack activities and reconstruct the attack story.
This helps better allocate investigative efforts for genuine
high-risk time.
Model choices. We select LSTM autoencoder as the
anomaly detection model, despite the existence of more
sophisticated sequential models, such as Transformer-based
models. The reason is that one major advantage of those
large models is their ability to learn token embedding based
on the context. However, our statistical model already en-
capsulates the relationship between current and historical
system states within the score vector. Additional context
learning might not offer substantial benefits and could po-
tentially disrupt the scores. Additionally, our goal is to
develop a lightweight real-time detection. Large models,
with significantly more parameters, may require consider-
ably longer training and prediction, affecting the efficiency
of monitoring.
Assumption for Gaussian distribution. By using the CDF
to calculate probability score for behavioral attributes, we
make an implicit assumption about system behavioral fre-
quencies’ distribution. While frequencies of behavioral at-
tributes do not strictly follow a Gaussian distribution, we
find their frequencies have a normal-distribution-like shape.
The scores also give useful information for the downstream
prediction. We show an example of their distributions from
DARPA OpTC host 0051 during a time period between Sept

20-23 in Figure 13 in the appendix.
Concept drift and model updating. System behaviors may
change over time when new tasks are introduced, leading to
an increase in false alarms. MADELINE can be retrained and
updated quickly within a few seconds, enabling a regularly
based (e.g., daily) update of the model. Once it is confirmed
that the risk associated with a specific time period is low, the
data from this period can be utilized to update the anomaly
detection model. We assume the integrity of benign logs
used for training. Although the detection of data poisoning
is an important field to research, it is beyond the scope of
this study.
Limitations. Regarding dataset choices, our evaluation was
constrained due to the mixture of attack and benign data
in some datasets, such as the popular DARPA Transpar-
ent Computing (TC) dataset. As an unsupervised learning
framework, MADELINE needs attack-free data for training.
Because of the substantial overlap of attack and benign
traces, removing attack entries from the log inevitably af-
fects the statistics of benign behaviors and thus fails to re-
flect a real-world benign setting. While event-level analyses
can precisely remove attack edges and exclude abnormal
interactions, our coarse-grained detection may be influenced
implicitly by the distorted statistic. We take the evaluation
of MADELINE on a more diverse set of APT attacks as our
future work when more suitable datasets become available.

Similar to other detection systems, MADELINE’s efficacy
may be affected by finely crafted, sophisticated mimicry
attacks that disguise themselves as benign activities [28]–
[30]. However, such evasive attacks require significant effort
to acquire historical system knowledge, calculate a seem-
ingly benign behavior ratio, and make adjustments with
consideration of the ongoing background system activities.
Additionally, MADELINE may struggle to generalize to un-
seen or unknown benign behaviors. That is, models trained
on the historical data of one host may not perform well on
another host with different behaviors.

6. Related Work

We discuss related works in areas of APT attack de-
tection and investigation, anomaly detection, and LSTM
autoencoder.
APT detection and investigation. Existing attack detec-
tions mainly utilize provenance graphs, including signature-
based [6]–[9], [31]–[33] and learning-based solutions [4],
[5], [10]–[15], [17], [19], [26]. Specifically, some works use
graph or event statistics. NoDoze [11] computes an anomaly
score for every node along a dependency path based on
their occurrence frequencies. Unicorn [4] converts counts
of system provenance subgraphs to a system state represen-
tation to detect any outliers. P-gaussian [32] uses Gaussian
distribution to describe attack sequences and identify similar
suspicious behaviors. MADELINE adopts a different graph-
free statistical approach, enabling lightweight coarse-grained
detection with minimal computational resources. Other APT
defense works include network-level approaches [34], [35].

Attack investigation happens after the detection of at-
tacks to gain intelligence of the attack, clear threats in the
system, and help strengthen the protection. MADELINE can
be used along with these systems as the first layer of attack
detection. Most investigation works focus on analyzing the
causality of events using provenance graphs [21], [36]–[39].
Recent research also uses natural language processing (NLP)
methods to track and recover the attack story [16], [40]–
[42]. Studies have also been done on provenance graph
reduction to save investigative efforts [43]–[48] and on
effective logging systems to reduce overhead [49]–[52].
Log anomaly detection. Besides attack analysis, anomaly
detection has also been developed for other types of logs to
identify task failures or system errors. Sequential and NLP-
based solutions are widely used in this field [22], [53]–[58].
Researchers also use autoencoders to reconstruct to extract
features for anomaly detection [59]. Different from these
works, MADELINE reconstructs preprocessed system state
scores instead of single events.
LSTM autoencoder. Previous applications of LSTM au-
toencoder fall in the field of video reconstruction [60].
Recent studies apply it to detect anomalies in network
traffic [61]–[63]. MADELINE applies LSTM autoencoder
to reconstruct the system state in a more complex APT
detection scenario.

7. Conclusion

We propose MADELINE, a novel advanced threat de-
tection facilitating prompt online identification of malicious
system state. MADELINE utilizes statistical models to con-
dense the voluminous system audit logs and effectively
capture high-risk periods that deviate from normal. Our
evaluation shows that MADELINE is effective against various
APT scenarios, achieving comparable accuracy with state-
of-the-art tools while being significantly efficient in terms
of computational resource utilization. The fast detection en-
ables organizations to respond to attacks quickly, preventing
potential financial losses.

Acknowledgement

This work has been supported by the Office of Naval
Research under Grant N00014-22-1-2057 and the Virginia
Commonwealth Cyber Initiative (CCI).

References

[1] “The great bangladesh cyber heist shows truth is stranger than
fiction.” [Online]. Available: https://www.dhakatribune.com/opinion/
op-ed/122939/the-great-bangladesh-cyber-heist-shows-truth-is

[2] “Home — equifax data breach settlement.” [Online]. Available:
https://www.equifaxbreachsettlement.com/

[3] “Inside the opm hack, the cyberattack that shocked the us
government — wired.” [Online]. Available: https://www.wired.com/
2016/10/inside-cyberattack-shocked-us-government/

[4] X. Han, T. F. J. Pasquier, A. Bates, J. Mickens, and M. I. Seltzer,
“UNICORN: runtime provenance-based detector for advanced per-
sistent threats,” in Proceedings of Symposium on Network and Dis-
tributed System Security (NDSS), February 2020.

[5] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun, T. Pasquier, and
X. Han, “KAIROS: Practical intrusion detection and investigation us-
ing whole-system provenance,” in 2024 IEEE Symposium on Security
and Privacy (SP), 2024.

[6] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “Holmes: Real-time APT detection through correlation of
suspicious information flows,” in 2019 IEEE Symposium on Security
and Privacy (SP), 2019, pp. 1137–1152.

[7] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in 2020 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2020, pp. 1172–1189.

[8] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence
explosion in forensic analysis using alternative tag propagation se-
mantics,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1139–1155.

[9] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, 2019, pp. 1795–1812.

[10] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and
P. Mittal, “Towards a timely causality analysis for enterprise security.”
in Proceedings of Symposium on Network and Distributed System
Security (NDSS), 2018.

[11] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in Proceedings of Symposium on Network and Distributed
System Security (NDSS), 2019.

[12] W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen,
Z. Li, J. Rhee, J. Gui et al., “This is why we can’t cache nice
things: Lightning-fast threat hunting using suspicion-based hierarchi-
cal storage,” in Proceedings of the 36th Annual Computer Security
Applications Conference, 2020, pp. 165–178.

[13] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee,
Z. Chen, W. Cheng, C. A. Gunter et al., “You are what you do: Hunt-
ing stealthy malware via data provenance analysis.” in Proceedings
of Symposium on Network and Distributed System Security (NDSS),
2020.

[14] M. U. Rehman, H. Ahmadi, and W. U. Hassan, “Flash: A com-
prehensive approach to intrusion detection via provenance graph
representation learning,” in IEEE Symposium on Security and Privacy
(SP), 2024, pp. 139–139.

[15] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang, “PROGRAPHER: An
anomaly detection system based on provenance graph embedding,” in
32nd USENIX Security Symposium (USENIX Security 23), Anaheim,
CA, Aug. 2023, pp. 4355–4372.

[16] H. Ding, J. Zhai, Y. Nan, and S. Ma, “Airtag: Towards automated
attack investigation by unsupervised learning with log texts,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 373–
390.

[17] F. Dong, L. Wang, X. Nie, F. Shao, H. Wang, D. Li, X. Luo,
and X. Xiao, “DISTDET: A cost-effective distributed cyber threat
detection system,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 6575–6592.

[18] “Fivedirections/optc-data.” [Online]. Available: https://github.com/
FiveDirections/OpTC-data

[19] J. Zeng, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L.
Chua, “Shadewatcher: Recommendation-guided cyber threat analysis
using system audit records,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 489–506.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013.

https://www.dhakatribune.com/opinion/op-ed/122939/the-great-bangladesh-cyber-heist-shows-truth-is
https://www.dhakatribune.com/opinion/op-ed/122939/the-great-bangladesh-cyber-heist-shows-truth-is
https://www.equifaxbreachsettlement.com/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data

[21] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp.
1777–1794.

[22] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, 2017, pp. 1285–1298.

[23] “Darpa optc ecar - google drive.” [Online].
Available: https://drive.google.com/drive/u/0/folders/1NwaCWRyr
coyPbF2SvScbani5O9MXp7

[24] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ser. KDD ’16, 2016, p. 1035–1044.

[25] “Tactics - enterprise — mitre att&ck.” [Online]. Available:
https://attack.mitre.org/tactics/enterprise/

[26] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[27] “Provenanceanalytics/kairos - github.” [Online]. Avail-
able: https://github.com/ProvenanceAnalytics/kairos/blob/main/
DARPA/OpTC/optc graph learning.ipynb

[28] A. Goyal, X. Han, G. Wang, and A. Bates, “Sometimes, you aren’t
what you do: Mimicry attacks against provenance graph host intrusion
detection systems,” in 30th Network and Distributed System Security
Symposium, 2023.

[29] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002, pp. 255–264.

[30] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International conference
on machine learning. PMLR, 2018, pp. 1115–1124.

[31] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Cheng, Y. Chen,
S. Cheng, and X. Chen, “Conan: A practical real-time apt detection
system with high accuracy and efficiency,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 1, pp. 551–565, 2020.

[32] Y. Xie, Y. Wu, D. Feng, and D. Long, “P-gaussian: provenance-based
gaussian distribution for detecting intrusion behavior variants using
high efficient and real time memory databases,” IEEE Transactions
on Dependable and Secure Computing, vol. 18, no. 6, pp. 2658–2674,
2019.

[33] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A hybrid approach to enable efficient real-time provenance based
intrusion detection in big data environments,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 6, pp. 1283–1296,
2018.

[34] O. Bajaber, B. Ji, and P. Gao, “P4control: Line-rate cross-host attack
prevention via in-network information flow control enabled by pro-
grammable switches and ebpf,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2024, pp. 147–147.

[35] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and
W. Lee, “Enabling refinable {Cross-Host} attack investigation with
efficient data flow tagging and tracking,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1705–1722.

[36] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time
attack scenario reconstruction from cots audit data,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 487–504.

[37] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “Aiql:
Enabling efficient attack investigation from system monitoring data,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18),
2018, pp. 113–126.

[38] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “Atlas: A sequence-based learning approach for attack
investigation,” in 30th USENIX security symposium (USENIX security
21), 2021, pp. 3005–3022.

[39] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via
community discovery on correlated log graph,” in Proceedings of the
32Nd Annual Conference on Computer Security Applications, 2016,
pp. 583–595.

[40] P. Gao, F. Shao, X. Liu, X. Xiao, Z. Qin, F. Xu, P. Mittal, S. R. Kulka-
rni, and D. Song, “Enabling efficient cyber threat hunting with cyber
threat intelligence,” in 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, 2021, pp. 193–204.

[41] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao,
“Self-attentive classification-based anomaly detection in unstructured
logs,” in 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 2020, pp. 1196–1201.

[42] Y. Shen and G. Stringhini, “{ATTACK2VEC}: Leveraging temporal
word embeddings to understand the evolution of cyberattacks,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
905–921.

[43] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “{Back-Propagating} system dependency impact for
attack investigation,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 2461–2478.

[44] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and D. Meng, “Depcomm:
Graph summarization on system audit logs for attack investigation,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 540–557.

[45] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics.” 2021.

[46] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “Nodemerge: Template based efficient data reduc-
tion for big-data causality analysis,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
2018, pp. 1324–1337.

[47] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High fidelity data reduction for big data security
dependency analyses,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 504–
516.

[48] T. Van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova,
A. Continella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna,
“Deepcase: Semi-supervised contextual analysis of security events,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 522–539.

[49] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical prove-
nance tracing by alternating between logging and tainting,” in 23rd
Annual Network And Distributed System Security Symposium (NDSS
2016), 2016.

[50] H. Ding, S. Yan, J. Zhai, and S. Ma, “{ELISE}: A storage efficient
logging system powered by redundancy reduction and representation
learning,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 3023–3040.

[51] H. Ding, J. Zhai, D. Deng, and S. Ma, “The case for learned prove-
nance graph storage systems,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 3277–3294.

[52] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “To-
wards scalable cluster auditing through grammatical inference over
provenance graphs,” in Network and Distributed Systems Security
Symposium, 2018.

[53] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection
via bert,” in 2021 international joint conference on neural networks
(IJCNN). IEEE, 2021, pp. 1–8.

https://drive.google.com/drive/u/0/folders/1NwaCWRyr_coyPbF2SvScbani5O9MXp7_
https://drive.google.com/drive/u/0/folders/1NwaCWRyr_coyPbF2SvScbani5O9MXp7_
https://attack.mitre.org/tactics/enterprise/
https://github.com/ProvenanceAnalytics/kairos/blob/main/DARPA/OpTC/optc_graph_learning.ipynb
https://github.com/ProvenanceAnalytics/kairos/blob/main/DARPA/OpTC/optc_graph_learning.ipynb

[54] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,
R. Zhang, S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection
of sequential and quantitative anomalies in unstructured logs.” in
IJCAI, vol. 19, no. 7, 2019, pp. 4739–4745.

[55] Y. Lee, J. Kim, and P. Kang, “Lanobert: System log anomaly detection
based on bert masked language model,” Applied Soft Computing, vol.
146, p. 110689, 2023.

[56] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detection
on unstable log data,” in Proceedings of the 2019 27th ACM joint
meeting on European software engineering conference and sympo-
sium on the foundations of software engineering, 2019, pp. 807–817.

[57] Q. Cheng, A. Saha, W. Yang, C. Liu, D. Sahoo, and S. Hoi,
“Logai: A library for log analytics and intelligence,” arXiv preprint
arXiv:2301.13415, 2023.

[58] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,”
arXiv preprint arXiv:2107.05908, 2021.

[59] A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly
detection,” ICT Express, vol. 6, no. 3, pp. 229–237, 2020.

[60] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using lstms,” in International con-
ference on machine learning. PMLR, 2015, pp. 843–852.

[61] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Network
anomaly detection using lstm based autoencoder,” in Proceedings of
the 16th ACM Symposium on QoS and Security for Wireless and
Mobile Networks, ser. Q2SWinet ’20, 2020, p. 37–45.

[62] J. Ashraf, A. D. Bakhshi, N. Moustafa, H. Khurshid, A. Javed, and
A. Beheshti, “Novel deep learning-enabled lstm autoencoder architec-
ture for discovering anomalous events from intelligent transportation
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 7, pp. 4507–4518, 2021.

[63] H. Homayouni, S. Ghosh, I. Ray, S. Gondalia, J. Duggan, and
M. G. Kahn, “An autocorrelation-based lstm-autoencoder for anomaly
detection on time-series data,” in 2020 IEEE International Conference
on Big Data (Big Data), 2020, pp. 5068–5077.

Appendix

TABLE 11: Attack scenarios of DARPA OpTC dataset.

Attack senario Date Attacked hosts
Plain PowerShell
Empire Sept 23 (day 1) 0201, 0660

Custom Powershell
Empire Sept 24 (day 2) 0501

Malicious Upgrade Sept 25 (day 3) 0051

TABLE 12: Performance of OC-SVM on attack scenarios as a
baseline.

Fixed
(linear, 0.95)

Fixed
(poly, 0.7) Grid search

Host Recall FPR Recall FPR Recall FPR
0051 0.929 0.006 1.000 0.455 0.929 0.006
0501 0.000 0.000 0.904 0.033 0.904 0.033
0660 0.000 0.000 0.940 0.075 0.950 0.094
0201 0.000 0.000 0.860 0.000 0.983 0.043
avg 0.232 0.002 0.926 0.141 0.942 0.044

TABLE 13: Performance of Autoencoder on attack scenarios as a
baseline.

Input size 1 Input size 5Host Recall FPR Recall FPR
0051 0.352 0.006 0.787 0.000
0501 0.566 0.022 0.862 0.000
0660 0.283 0.019 0.871 0.087
0201 0.004 0.052 0.797 0.069
avg 0.301 0.025 0.829 0.039

TABLE 14: Attributes selected for StreamSpot dataset.

Category Attributes

file

file-execve, file-access, file-open, file-fstat,
file-mmap2, file-close, file-read, file-stat,
file-write, file-unlink, file-listen, file-chmod,
file-connect, file-writev, file-recv, file-ftruncate,
file-sendmsg, file-send, file-recvmsg,
file-accept, file-sendto, file-recvfrom,
file-truncate, file-bind

process process-clone, process-waitpid

Alternative state score calculation. An alternative way
of normalizing the frequency is to divide each attribute’s
frequency by the total number of entries in its category:

freqi =
occurrences of attributei
entries in this category

(10)

where length of window =
∑

j # entries in categoryj .
We refer to this setting as categorical normalization.

For state score calculation, besides using the single
attributes, we also investigate alternatives using joint at-
tribute distributions. A score using a joint distribution for
2 attributes is calculated as
score = 1− P (µ1 − diff1 < X1 < µ1 + diff1,

µ2 − diff2 < X2 < µ2 + diff2)
(11)

where diff1 is the difference between the distribution mean
µ1 for the first attribute and the newly observed data point
d1 for the first attribute, similarly for diff2:

diff1 = |µ1 − d1| , diff2 = |µ2 − d2| (12)

and FX1, X2
is the CDF of X1, X2:

FX1,X2
(x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

=

∫ x1

−∞

∫ x2

−∞
fX1,X2(u, v) dv du

(13)

and fX is the PDF of X1, X2:

f(x;µ,Σ) =

1√
(2π)2 det(Σ)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(14)

with x being the vector for newly observed values ([d1, d2]
in this case), µ being the vector for distribution mean, Σ
being the covariance matrix, det(Σ) being the determinant
of the covariance matrix. Using the joint distribution of
multiple variables results in an increase in the dimensions of
the score vector relative to using single variable distribution.

(a) host 0070 (b) host 0101 (c) host 0307 (d) host 0455 (e) host 0468

(f) host 0470 (g) host 0607 (h) host 0720 (i) host 0771 (j) host 0860

Figure 11: Distribution of data reconstruction errors on attack-free hosts (self-reconstruction).

(a) YouTube (b) GMail (c) VGame

(d) Download (e) CNN (f) All

Figure 12: Distribution of data reconstruction errors on StreamSpot dataset (self-reconstruction).

That is, when considering all possible joint distributions of
k variables chosen from the n behavior attributes from the
previous step, the dimension of the score vector computes
as

dimension = C(n, k) =

(
n

k

)
=

n!

k!(n− k)!
(15)

where n is the number of selected attributes and k. For
instance, in the case that we have 12 behavior attributes
and employ joint distributions of 2 variables for score cal-
culation, the score vectors will have a dimension of 66. We
omit the details for the joint distribution of 3 attributes here,
which follows the same procedure.

(a) FILE CREATE (b) FILE DELETE (c) FILE MODIFY (d) FILE READ

(e) FILE RENAME (f) FILE WRITE (g) PROCESS CREATE (h) PROCESS OPEN

(i) PROCESS TERMINATE (j) REGISTRY ADD (k) REGISTRY EDIT (l) REGISTRY REMOVE

Figure 13: Distribution of system behavioral attributes. The example is based on a time period on DARPA OpTC host 0051 between
Sept 20-23 (AIA-51-75.ecar-2019-12-08T00-56-58.175 in the original dataset).

Continuous monitoring

Flag abnormal periods

HIGH RISK

Confirm risk level using
our NCM feature

Obtain high-level
attack information

Event-level analysis and
attack flow rebuilding

Attack
investigation
and response

Existing fine-grained
analysis

Madeline
(our continuous
lightweight detection)

Figure 14: Continuous monitoring and attack investigation life
cycle.

Figure 15: Example of calculating top abnormal attributes and
category using reconstruction errors.

	Introduction
	Overview
	Threat model
	Motivating example and security gap
	Overview of Madeline

	Design of Madeline
	Distribution-based system state embedding
	Benign behavior learning and anomaly prediction
	Continuous monitoring and Madeline-NCM

	Experimental Evaluation
	RQ1: Recall and FPR of Madeline
	RQ2: Comparison with state-of-the-art detections
	RQ3: Ablation study

	Discussion
	Related Work
	Conclusion
	References
	Appendix

