CloudSafe: Securing Data Processing within
Vulnerable Virtualization Environments in the Cloud

Huijun Xiong! Qingji Zheng?

Xinwen Zhang*
fDepartment of Computer Science, Virginia Tech, VA, USA

Danfeng (Daphne) Yao!
*Huawei Research Center, CA, USA

iDepartment of Computer Science, University of Texas at San Antonio, TX, USA

Abstract—Data protection in public cloud remains a challeng-
ing problem. Outsourced data processing on vulnerable cloud
platforms may suffer from cross-VM attacks, e.g. side-channel
attacks that leak secrecy keys. We design and develop CloudSafe,
a general and practical data-protection solution by integrating
cryptographic techniques and systematic mechanisms seamlessly
to address this issue. CloudSafe first allows a data owner to
outsource encrypted data in the cloud. It then employs a cloud-
based proxy to re-encrypt stored encrypted data and delivers it
to authorized cloud applications upon access requests. To combat
cross-VM side-channel attacks, the final data decryption key is
one-time use and can be retrieved from the data owner on-
demand. Any key leakage after an authorized access cannot
compromise data confidentiality. For data sharing, CloudSafe
allows authorized applications to efficiently access the protected
data. The prototype evaluation demonstrates the efficiency of the
scheme towards large-scale cloud applications.

Index Terms—cloud security, outsourced computation, side-
channel attack, proxy re-encryption, one-time key.

I. INTRODUCTION

Without physical possession of outsourced data, cloud cus-
tomers usually rely on cryptographic techniques to protect
and control their outsourced data. Since fully homomorphic
encryption (FHE) techniques are still not practical for real
applications, current data processing in the cloud can only
be performed on the plaintext of encrypted data. However,
newly discovered vulnerabilities in cloud virtualization envi-
ronment have threatened the security of using cryptographic
techniques [7], [10], [20], [21], [32]. For example, researchers
in [20], [32] have demonstrated the possibility of performing
cross-VM (virtual machine) side-channel attacks to steal cryp-
tographic keys on a well-known existing public commercial
cloud environment. Researchers in [7], [10], [21] have found
that security misconfiguration and malicious software are
intentionally left in the public shared VM images. Those
deliberate vulnerabilities would expose users’ sensitive data
once the images are reused by other cloud users. Although
a security-sensitive cloud customer may build a clean virtual
machine from scratch to avoid such potential security risks, it
is difficult to escape from eavesdropping through hidden side-
channels set up by malicious neighbors on the same cloud
platform.

Previous work aiming to address cross-VM side-channel
attacks against cryptographic systems focuses on a single
host machine, e.g., designing patternless cryptographic opera-
tions [9], [17], [18], [23] to secure cryptographic key usage.
However, due to the pervasive and stealthy characteristics of

side-channels, directly blocking all side-channels of a system
is difficult, especially for a system running in the public cloud.
To our best knowledge, no existing solutions are effective
enough to protect the usage of cryptographic keys from side-
channels in the cloud. To provide complete data security in the
current vulnerable cloud environment, it has been recognized
that cryptography alone is not enough [24].

In this work, we introduce CloudSafe, a new approach that
offers desirable security properties for a data owner to secure
and control encrypted outsourced data in the public cloud
with the presence of semi-trusted cloud service providers and
malicious cloud customers. CloudSafe puts special emphasis
on new security issues raised from cross-VM side-channel
attacks against secure data processing on the virtualized cloud
platforms.

Specifically, we observe that stealing behaviors involved
in side-channel attacks are usually accomplished only after
a secret, such as a data decryption key, is loaded into the
victim machine’s physical component, e.g., CPU cache, and
computed. With this observation, our solution against these
attacks is to use one-time secret keys in victim machines:
each secret key is discarded once it is been used. We believe
that, although this may not completely address side-channel
attacks, it minimizes the damages caused by the attacks and
thus enhances the security of cryptographic key usage in the
vulnerable cloud. However, this approach prompts two major
challenges: (1) complicated key management due to large
amount of one-time data decryption keys; (2) heavy com-
putation requirements over outsourced encrypted data by the
data owner due to frequent updates for data decryption keys.
Without overcoming these two challenges, it is impractical to
use one-time key in the current public cloud environment.

In response, CloudSafe proposes two techniques to address
these challenges. First, CloudSafe defines a flexible and ef-
ficient cryptographic scheme, which supports one-time data
decryption key strategy and assures that outsourced data is
not only kept confidential in the public cloud but also can
be accessed with different one-time data decryption keys
without imposing heavy computation on the data owner side.
Particularly, CloudSafe extends CloudSeal [28], a dual-layer
cryptographic scheme, to provide strong confidentiality to
outsourced data via specific encryption algorithms and flexible
access control over outsourced data with re-encryption tech-
nique. When an authorized entity wants to decrypt outsourced
encrypted data in the cloud with a new data decryption

key, only a small part of the encrypted data needs to be
modified, which significantly reduces the overall computation
and makes encrypted data flexible enough to support one-time
data decryption key strategy.

Second, CloudSafe leverages a novel centralized key distri-
bution framework inside the public cloud environment to assist
storing and distributing one-time data decryption keys. A data
owner first distributes a key into the framework within the
public data center, and then a trusted key server distributes
the key from the framework to VMs through the internal
network of the cloud. Through the entire process, the key
management framework is responsible for two aspects: (1)
the data decryption key is securely stored in public cloud; (2)
only authorized computing VMs are able to access the data de-
cryption key from anywhere in the data center. These features
enable CloudSafe to protect the secure usage of cryptographic
keys in the vulnerable virtualization environment and flexibly
adapt to dynamic VM migration activities in the public cloud.

We have implemented a prototype of CloudSafe in a com-
puting cluster virtualized with Xen. With extensive analysis
and evaluation, we have demonstrated that CloudSafe is secure
and efficient enough to protect outsourced data security and
support the usage of one-time data decryption keys within the
vulnerable virtualization environment.

Roadmap. We present the basic setting for our approach
in Section II. We overview CloudSafe in Section III and
provide detailed description for the two main components
of CloudSafe in Section IV and Section V, respectively. A
prototype implementation and its evaluation are described
in Section VI. We discuss related work in Section VII and
conclude this paper in Section VIIIL

II. SYSTEM SETTING

A. Problem Scenario

A typical usage of public cloud infrastructure service, shown
in Figure 1, involves three types of participants: infrastructure
service provider, cloud customers, and virtual servers.

e Infrastructure service provider, also referred as the cloud
provider, carries infrastructural resources including phys-
ical storage devices, computing machines, and network
equipment, and provides virtualized resources as services
to cloud customers.

o Cloud customers purchase infrastructure services on de-
mand. A cloud customer who stores and processes her
data in the cloud is called a data owner. A cloud customer
who consumes the data stored in the cloud is called a data
user, which can be a data owner at the same time. Data
users might be malicious and perform cross-VM side-
channel attacks, which are referred as malicious cloud
customers or attackers.

o Virtual servers are built by a cloud customer on virtual
machines leased by the cloud provider. It might host
various cloud applications for data processing in the
cloud.

Infrastructureservice provider
e b

&,

= provides, maintains and
has fully access to

Storage ~ "'Virtual servers

encrypted data

Cloudmf»'“
& infrastructure *
. o

rent, use, e

but demand security,

< rent, use,
. and steal secrecies

€) Data owners @ Malicious cloud customers

" (benign cloud customers)

Fig. 1. The data usage scenario in public cloud.

A cloud provider usually arranges multiple virtual servers
from different cloud customers on the same physical infras-
tructure, e.g., to maximize the utility of her resources without
cloud customers’ awareness. A data owner may store her data
in the cloud storage and set up several virtual servers to process
them in the cloud. Although it is possible that a virtual server
may consume data from different origins, for simplicity we
consider a single data owner in our model and regulate the
direction of data flow only from the data owner to the cloud
storage, and then to virtual servers.

B. Threat Model

We confine the malicious behavior of a cloud customer
similar to that in [20], [32], [31]: stealing cryptographic secrets
from neighbor victim cloud customers by pre-built hardware-
based side-channels. They do not have the control over the
victim virtual servers.

Data owners who require confidential cloud services are our
victims and fully trusted. The cloud provider is semi-honest,
who may attempt to peek the information that is storing in
her infrastructure. In addition, we consider that the underlying
infrastructure in the cloud including hypervisors and the
hardware is not compromised. That is, we do not consider
attacks against hypervisors and any insider threat or abuse
of cloud administrative rights within a cloud. Specifically for
Xen virtualization environment [6], [8], we assume malicious
attackers in DomUs cannot penetrate into the Dom0 of a
physical machine, i.e., a malicious cloud customer can only
mount cross-VM side-channel attacks among virtual servers
in different DomUs on the same physical machine.

III. DESIGN OVERVIEW

A. Initial Attempts

Simple one-time data decryption key scheme. A straightfor-
ward solution to protect cryptographic key usage is to adopt
one-time data decryption keys on original data directly. A one-
time key is used to encrypt data before it is outsourced to the
cloud. After being used by a virtual server, the key is revoked.
However, this scheme requires the data owner to remove the
used encrypted data and upload the newly ciphertext with a
new key to the cloud storage each time the data decryption key
is used. Obviously this solution is impractical when frequent
and large-scale data decryption operations are needed.

Hypervisor-assisted key usage. In order to avoid heavy
computation and large network overhead caused by the sim-
ple one-time data decryption keys, an alternative solution
to protect cryptographic key usage in virtual servers is to
adopt hypervisor-assisted key usage. According to our threat
assumption, cross-VM side-channel attacks happen only be-
tween virtual servers on the same physical machine, and
it is hard for a malicious cloud customer to build side-
channels against the hypervisor and other privileged domains.
Therefore, moving data decryption operation from a virtual
server to the hypervisor using long-term data decryption key
is secure enough to protect cryptographic key usage in the
cloud virtualization environment, since the key never resides
in the vulnerable virtual server environment. However, with
the increasing number of virtual servers that are running
on the same physical machine, usually from different cloud
customers, it is discouraging to execute computation-intensive
operations in the hypervisor or privileged domain for per-
formance considerations. Furthermore, dynamically loading
guest virtual server’s code for data decryption purpose in
the privileged domain may introduce new risks to virtualized
platforms.

B. Design Strategies

CloudSafe adopts the following strategies to significantly
reduce cross-VM side-channel attacks and overcome short-
comings stated above.

Combination of one-time decryption key and proxy re-
encryption. The method of simply using one-time data de-
cryption keys incurs heavy computational costs on data own-
ers. We employ the idea of proxy re-encryption. Given a
master key, the data owner generates a key pair having specific
purpose. One is one-time re-encryption key. It is distributed
to the cloud so that the cloud can re-encrypt the ciphertexts to
a new one. The other one is one-time data decryption key. It
is issued to the data user so that the data user can decrypt the
new ciphertext. Note that the one-time data decryption key can
be used to decrypt the ciphertext re-encrypted with designated
one-time re-encryption key. This strategy enjoys the following
advantages:

o The data owner can offload the heavy computational
cost to the cloud by leveraging the elastic computa-
tional power provided by the cloud. In addition, without
uploading new ciphertexts, it dramatically reduces the
bandwidth overhead of key revocation process.

o The data owner can directly implement access control on
her demands, e.g. by controlling the distribution of one-
time data decryption keys and re-encryption keys.

Centralized key distribution framework in the cloud. In
order to securely distribute keys to corresponding entities in
public cloud, CloudSafe adopts different channels for different
keys. First, we deploy a proxy in a dedicated cloud platform,
which only runs a single virtual machine of the data owner.
With this, the cross-VM side-channel attack is not a threat and
the proxy can have a public/private key pair to build secure

channel with the data owner. Therefore the re-encryption key
can be distributed with this channel securely. For data decryp-
tion key, since it travels through public in-cloud network, and
we cannot assume a secure channel between a virtual server
and the data owner due to cross-VM side-channel attacks in the
virtual server side, we develop a centralized key distribution
framework by leveraging the relatively secure hypervisor and
Dom0 environment on each cloud platform. With this, a secure
channel can be built between the data owner and a trusted
agent in Dom0, which in turn delivers data decryption keys to
local virtual servers without going to public in-cloud network.
This mechanism achieves high assurance of key distribution
in the public cloud environment.

C. CloudSafe Overview

To embody these design strategies, CloudSafe consists of
three main operations: outsource operation, authorization op-
eration, and distribution operation. The first two operations
are executed by a data owner with a cryptographic scheme
specified for CloudSafe to protect outsourced data confiden-
tiality, and the latter one is carried out by the key management
framework of CloudSafe to guarantee secure distribution and
usage of data decryption keys by virtual servers.

Outsource operation. An outsource operation provides con-
fidentiality to the outsourced data stored in a cloud storage.
During this operation, the data owner takes the original plain-
text of her data into the encryption cipher with a secret key
and outsources the encrypted data to the cloud storage. The
data owner chooses the secret key for each outsourced data and
records them locally for authorization usage. This operation is
done only once for each data object (e.g., a file) before it is
exported from the data owner to the cloud storage.

Authorization operation. An authorization operation pre-
vents unauthorized access to the outsourced data in the
cloud storage via one-time decryption keys and re-encryption
keys. Upon a data request from an authorized virtual server,
the data owner first generates a pair of one-time keys
(reencryption_key, data_decryption_key), and sends them to
the proxy service and the virtual server in the cloud, respec-
tively. Then the proxy re-encrypts the data with the received
one-time reencryption_key and sends the re-encrypted cipher-
texts to the virtual server. Note here a pair of one-time keys
is generated for each data request, and CloudSafe ensures that
only the re-encrypted data can be decrypted by an authorized
virtual server in the cloud, leaving the rest of the outsourced
data secure in the cloud storage. With efficient outsourced
data transformation, CloudSafe is able to support one-time key
strategy with affordable computation overhead. Besides, the
re-encryption operation offloaded to the proxy further reduces
the workload at the data owner side.

Distribution operation. A distribution operation provides se-
cure distribution of one-time key pairs with different channels.
The re-encryption key is delivered through pre-built secure
channel between the data owner and the proxy. The data
decryption key is distributed through a novel centralized key

management framework in the cloud. First, the key is sent by
the data owner to a key server through a secure channel over
the public network; then the key is delivered from the key
server to a requesting virtual server. This key transfer may
require the hypervisor’s participation.

IV. CRYPTOGRAPHIC SCHEME

A. Cryptographic Scheme for CloudSafe

Definition The cryptographic scheme in the CloudSafe con-
sists of the following algorithms:

e (mk,pm) <« Setup(1?*) : This is the bootstrapping
algorithm run by a data owner to initialize the system.
It outputs a master key mk for the data owner itself and
the parameters pm which are made public.

e cph < PEnc(pm,mk, M) : This is the data encryption
algorithm run by the data owner before outsourcing M to
the cloud. It outputs the encrypted version of M.

o (deckey, rekey) <— KeyPairGen(pm, mk) : This is the al-
gorithm for generating a pair of one-time keys, including
a re-encryption key rekey, issued to a cloud-based proxy,
and a decryption key, issued to an authorized virtual
server where a data processing application runs. It is
run by the data owner in order to authorize the virtual
server to access the encrypted data correctly. The pair
of keys is distributed to the proxy and the virtual server
via secure channels, respectively. Note that the decryption
key deckey can only decrypt the re-encrypted ciphertext
along with rekey.

e recph «+ ReEnc(pm,cph,rekey) : This is the re-
encryption algorithm run by the proxy to re-encrypt the
stored ciphertext data to another ciphertext with the re-
encryption key rekey. It outputs the re-encrypted cipher-
text which will be delivered to the authorized virtual
server.

e {M, 1} <« Dec(recph,deckey(cph, mk)) : This is the
decryption algorithm run by an authorized virtual server
with the decryption key deckey (or the data owner with
the master key mk). It outputs the plaintext data M
corresponding to the re-encrypted ciphertext recph, as
well as the original ciphertext cph, or outputs error
message L.

The security of this scheme requires that: (1) the master
key cannot be leaked, (2) given one key of a key pair (a
re-encryption key and a decryption key), the data user and
the cloud cannot derive the other under the assumption that
data users and the cloud do not collude, and (3) the security
of ciphertexts is preserved, i.e., achieving indistinguishability
from chosen-plaintext attacks (CPA).

B. Construction for the Cryptographic Scheme

Here we propose an efficient cryptographic scheme satisfy-
ing the desirable properties as above.

Let SE be the standard symmetric encryption scheme
achieving chosen-plaintext security (CPA), such that SE =

(KeyGen, Enc, Dec), where KeyGen is a probabilistic key gen-
eration algorithm, Enc is a probabilistic encryption algorithm,
and Dec is a deterministic decryption algorithm.

o Setup(1*) : Given a security parameter), the data owner
chooses a bilinear map e : G x G — G, where G and
G are cyclic groups of the order p, an \-bit prime. Let
g be a generator randomly selected from G. Let H be
a secure hash function, H : {0,1}* — {0,1}*, and Fj
be a secure keyed hash function, Fy, : {0, 1}>‘1+1 LA Zy,
where \; is another security parameter and k is the key.
The data owner selects a randomly from Z, and sets
pm = (e, g9,G, Gr,p, g%*), mk = (a).

o PEnc(pm,mk,M) : The data owner selects s ran-
domly from Z,. Let M = (My,---,M,) € G"
uniquely identified by the file handler fid, and com-
pute z = F(H(fid)[0) and y = Fp(H(fid)[1).
The data owner encrypts M with SE, st M =
(M1, Mg, -+ ,M;,--- ,M,,) where M, = SE.Enc(z, M;)
and x is the symmetric key for SE. Then she selects
s randomly from Z, and generates the ciphertext as
cph = (9%°,{Mie(g,9)"}i1)-

o KeyPairGen(pm, mk) : Given the access request on
data M specified by fid, the data owner selects ¢ ran-
domly from Z,, computes z = Fn(H(fid)|0) and
y = Fo(H(fid)|1), and generates the decryption and
re-encryption keys as deckey = (x,t), rekey = (g'/¥).

o ReEnc(pm, cph, rekey) Given the re-encryption

key rekey, the cloud performs the re-encryption
on cph = (g¥°,{Mle(g,9)°}~,) as follows:
recph = (e(g,9)",{Mie(g.9)°}iLy) where

e(g.9)" = e(g**,g")

e {M, 1} <« Dec(recph,deckey) : Given the ciphertext
recph = (e(g, 9)", {Me(g, g)*}*_,) and the decryption
key deckey, the data user computes X = (e(g, g)**)"/*
and obtains the data M = (M},--- M/),1 < i < n
by M, = Mie(g,9)°/X. Hence, the data user can
decrypt M’ with the symmetric key x and gets M’ =
(M1, Mg, -+ ,M;, -+ M,,) where M, = SE.Enc(z, M;)
and zx is the symmetric key for SE. Similarly, given cph
and the master key mk, the decryption can be done.

Note that in the scheme each M is encrypted with a distinct
secret key, determined together by the master key and the hash
value of the data handler. This simplifies the key management
since only the master key mk should be kept private. On the
other hand, distinct secret key for each data can minimize the
attack surface if the secret key corresponding to some data
was compromised.

We also note that the one-time decryption key deckey and
re-encryption key rekey play vital role in enforcing access
control policies for the data owner. First, only with one key
from the key pair (deckey, rekey), neither the cloud nor data
users can access any information from the stored data in the
cloud. Second, given a key pair (deckey, rekey), deckey can
only be used to decrypt the ciphertexts corresponding to rekey.
This achieves the isolation among data users in the sense

Dom 0
Key
client J|| vsi

——=L—Nen

Dom 0

Global key storage

Key
client vsl || vs2

Dom 0 Xen

- network Key
Key server client J| vs1 || vs2

Data e 3
owner Decryption key

Fig. 2. The overview of key management framework.

that one data user cannot decrypt the ciphertexts which is not
designated for him. Through this, this scheme enables the data
owner to realize flexible access control easily by generating
and distributing (deckey, rekey).

This scheme achieves chosen-plaintext security for cipher-
texts generated by PEnc, given that SE is a CPA secure
symmetric encryption scheme and the Decisional Bilinear
Diffie-Hellman assumption is hard. The master key and the
pair of one-time keys are also secure given the Decisional
Bilinear Diffie-Hellman assumption. We prove these security
properties in Appendix.

V. KEY MANAGEMENT

To securely store and distribute one-time data decryption
keys from data owners to virtual servers, CloudSafe relies
on a centralized in-cloud key management framework. In this
section, we demonstrate the design of this framework within
the context of Xen virtualization environment [6], [8] as Xen is
a popular hypervisor that has been used in real cloud environ-
ments. Usually, a Xen virtualized platform contains two types
of domains: one Dom(and multiple DomUs. The Dom0 is the
control domain with high privileges, while DomUs are guest
domains for virtual servers rented by cloud customers. As
DomUs are insecure due to potential cross-VM side-channel
attacks, we utilize Dom0 on each physical machine to enhance
the security of data decryption key distribution and usage in
DomUs.

A. Overview

Figure 2 depicts the overview of our key management
framework, which consists of three main components: the key
server, the global key storage, and multiple key clients.

The key server runs in a dedicated machine instead of a
rented virtual machine in the cloud, e.g., a dedicate server pro-
vided by Amazon EC2 [1] or GoGrid [2], which run applica-
tions for a single cloud customer. Usually a data owner deploys
one key server in the cloud, which provides the connection
between the data owner (or application running as the data
owner) and all virtual servers rented by the data owner. It has
its own public/private key pair (PKkeyse,,ver, SKpeyserver)
to set up secure channel with the data owner. It listens on a
certain port to accept one-time data decryption keys from the
data owner and writes the received data decryption keys to the
global key storage for future access from virtual servers.

The global key storage is a centralized data storage
attached to the key server physically and remotely accessible

/GlobalKeyStorage

/Application
/Key

/Version

——Cl $value
——‘Cl SHash

SMetadata

Fig. 3. Cascade structure of the global key storage.

by key clients (virtual servers) over the cloud network. It stores
one-time data decryption keys on behalf of each virtual server
in a cascade structure as shown in Figure 3. The UUID is the
unique identifier of each virtual server in the cloud, which is
generated when a virtual server is created by the hypervisor
on a physical machine. As UUID is not changed during the
entire lifecycle of a virtual server, we use it as the top folder
name to identify the virtual server. The Application item
is the identifier of a local program running in the virtual server
that requires the data decryption key. The data decryption
keys are stored in the Key folder with associated Metadata
information of the encrypted data. Different versions of one-
time data decryption keys are sorted in different Version
folders in order to state the usage order of them in the
application. We use Hash to check the integrity of the value
of the key.

A Kkey client is a daemon program running in the DomO of
a virtualized platform. It reads the data decryption keys from
the global key storage on behalf of the applications running
in the virtual servers of the same physical machine. In order
to use the key client, the applications that the data owner runs
in a virtual server needs to call an API provided by the key
client through shared library.

For security purposes, the global key storage is configured
as read-only to key clients. Only the key server is able to write
it. Besides, each key client is able to read the data exclusively
assigned to the virtual server running on the same physical
machine, e.g., a certain UUID folder.

B. Secure Key Distribution

To securely distribute a one-time data decryption key from
the data owner to a virtual server, we follow the protocol
shown in Figure 4. Specifically, there are two key distribution
phases. Phase one includes Step 1 to Step 4 shown in Figure 4.
It delivers the key from the data owner to the key server
through public network; phase two includes Step 5 to Step
7 shown in Figure 4. It dispatches the key from the key
server to a virtual server via the key client through in-cloud
network. Details of each step are described as follows. For
representation simplicity, we omit the timestamps and nonces
for preventing re-play attacks in all protocol messages.

Step 1: The virtual server sends a data request packet
to the data owner with three fields: Metadata about the
requested data, (I Preyserver, POTtgeyserver) Of the key server
information, and its own identifier UUID and application
identity Application.

Data Owner Virtual Server
Step2: key \‘E _ Stepl: data request <
generation (@%‘Z’er i |
Step3: key .
distribution | Key Step5: key .
request Step7: key
Stepd: key LS€rver distribution I

store

Global Key
Storage

Step6: key read

Client

Fig. 4. Key distribution protocol with CloudSafe.
Step 2: Upon successful authorization verification based on the
UUID, the data owner generates a pair of re-encryption and
data decryption keys based on the Metadata she receives,
according to the algorithm in Section IV-B.
Step 3: The data owner builds up a secure channel with the
key server, and sends the data decryption key along with the
virtual server identity, application identifier, Metadata, and
key version to the key server through the channel.
Step 4: When the key server receives the key from the data
owner, it writes the key into a directory named UUID of the
global key storage, and sets the read permission only to the
key client with UUID.
Step 5: The application in virtual server sends key request
to the key client running in the same physical machine
when it wants to use the data decryption key. The key
request contains the virtual server identifier UUID, applica-
tion identifier Application, and latest version information
Version.
Step 6: The key client first verifies that the UUID is valid. If
yes, it finds the folder according to UUID, Application,
and Version in the global key storage, and reads the data
decryption key. Note that the key client only reads the folder
with Version that is smallest in which are greater than the
received Version.
Step 7: The key client sends back the data decryption
key to the virtual server with the same UUID along with
Application and Version information. The Version
information will be used by the virtual server for key retrieving
next time.

With these steps, the data decryption key never appears
in the space of the virtual server before it is used. Because
the data decryption key is only used once, this distribution
protocol ensures that the virtual server is the first one to use the
key. Therefore, key compromise (e.g., through side channels)
does not cause any harm to data confidentiality.

C. Virtual Server Lifecycle and Authentication

The lifecycle of a virtual server has three stages: creation,
migration, and termination. To authenticate and authorize
virtual servers for key usage, and sustain key availability to the
virtual server through its entire lifecycle, CloudSafe executes
the following steps.

Creation. Through certain interface provided by the cloud
provider, the data owner creates a new virtual server instance
in the cloud, and obtains a valid UUID. When the key server

receives a response from the data owner after the new virtual
server requests data from the data owner, it adds the new
record to the global key storage with UUID. Since the UUID
is generated by the hypervisor of the physical machine and
cannot be forged by a malicious virtual server, it is used for
authentication and authorization later when any application
running in the virtual server requests data from the data owner,
according to the key distribution protocol in Section V-B.
Migration: After the virtual server is migrated from one
physical machine to another, the virtual server can continue
to access the global key storage from the key client on the
new physical machine, since the migration of the virtual server
does not change its UUID.

Termination: When the data owner terminates a virtual server
in the cloud, it notices the key server, which in turn cleans
up the global key storage by deleting all data decryption keys
associated with the UUID.

An alternate solution to support secure key usage is to
send the one-time cryptographic secrets directly from the
data owner to the virtual server in the cloud. However, the
vulnerable virtual server environment makes it insecure to
store secrets locally for virtual servers. CloudSafe utilizes an
isolated secure storage and provides sustainable key access
across the entire cloud to guarantee secure key storage and
efficient key access in the public cloud.

VI. IMPLEMENTATION & EVALUATION
A. Implementation

Cryptographic primitives. We instantiate the cryptographic
primitives in Section IV-B in C language. We utilize OpenSSL
library [4] for AES functionality in a CFB mode, and PBC
library [5].

Key server. We implement the key server by utilizing network
file system (NFS) as shown in Figure 5. With the convenient
accessibility and scalability of NFS system, the key server is
only responsible for communicating with the data owner and
storing data decryption keys. While the NES server is in charge
of maintaining the global key storage and connecting with key
clients in the cloud. In our prototype, we place both the key
server and the NFS server on a dedicated physical machine,
manually create key storage files for individual virtual servers
in the cluster. We treat the key server as a TCP packet listener,
which listens on a certain port and accepts data from the data
owner and writes the data through the NFS server.

Key client. We utilize the NFS client to realize the function-
ality of the key client as shown in Figure 6. To obtain the key
for the virtual server, the key client first reads the keys from
the global key storage through the NFS client and then passes
them to applications in the virtual server through the in-cloud
network. The application running in a virtual server in DomU
communicates to the key client via a shared library.

B. Evaluation

To confirm the practicability of CloudSafe, we demonstrate
that CloudSafe brings acceptable cost to the system and the
network by answering the following questions:

1
Decryptior! Key

o] 1
Server

write

NFS Server
user system call
kernel v

Global Key
Storage

Fig. 5. The implementation of the key server with NFS.

read Dom 0 |Dom U
Globalkey J&«——| NFs | read["Key | —
Storage |HENEEED| Client Client [Send]key [Appllcatuon

mount

Fig. 6. The implementation of a key client with NFS client.

1) Do we have efficient proxy re-encryption operations on
a dedicated server to support one-time key strategy?

2) Does the proposed key management framework cause a
large network overhead?

We deployed the prototype of CloudSafe over a computing
cluster with 324 individual computers, each of which is Apple
Mac Pro with eight Intel Xeon CPU 2.80GHz and 8GB
memory. We install Xen virtualization environment on six
machines and connect them with Ethernet. A cluster-wide NFS
file system is installed and a 10TB storage is mounted to the
six machines in a way that the storage is only accessible in
Dom0 of these machines.

1) Re-encryption Efficiency.: To validate the practicality
of the strategy of combining one-time data decryption key
and proxy re-encryption, we focus on the overhead caused
by re-encryption operations which is executed by the proxy
in CloudSafe. We test our algorithm on a single machine
equipped with Intel 2 Duo CPU 2.93GHZ, 4GB memory, and
Ubuntu 12.4 operating system. We run the code with different
sizes of encrypted data. For each size, we run the experiment
six times and record the average computation time.

Figure 7 shows the computational overhead of the re-
encryption operations with different sizes of encrypted data.
The cost of re-encryption operation is independent from the
file sizes. The average processing time of re-encryption op-
eration per file is around 0.005 seconds which means 200
data requests can be handled within one second. It might be
true that the processing time in real applications would be
larger than the experimental result. We expect that it will not
significantly affect our solution’s practicability in the public
cloud environment.

2) Network Latency: We investigate the network latency
caused by the proposed two-phase key distribution protocol
in our cluster environment. Recall that CloudSafe utilizes a
key server, a NFS server, NFS clients, and key clients to
distribute data decryption keys from data owners to virtual
servers. Hence, we calculate the network latency with the
following equation, where the overall distribution latency of a
single data decryption key consists of three parts: the latency

0.006

0.005

0.004 -

0.003

Time (s)

0.002

0.001 -

0.000 + + + + + + i
173M 223M 269M 373M 472M 568M 617M 860M
File Size (MB)

Fig. 7. Performance of proxy re-encryption operations on different sizes of
encrypted files.

o
o
2

1 —e—Key Distribution between Dom0 and DomU on a Single Machine
Key Distribution with CloudSafe
=e=Direct Key Distribution

o o
Q Q
=1 =1
& ®©

0.004 -

Network Latency (s)

0.002 4

128 256 1024 2048

12
Key Slszes (bit)

Fig. 8. Network latency of different key distribution scenarios.

between the data owner to the key server, the latency between
the key server to a key client (NFS read), and the latency
between the key client to a virtual server.

Latencym;erqll = LatenCyDataownerﬁKeyserver+
LatencyNFSread + LatenCyKeyclient%Virtualserver

For latency between the key server to the key client, it
takes a fixed 0.003 seconds to distribute a data decryption
key which is less than 2048 bits. For the other two kinds of
latency, we place the data owner, the key server, the key client
on different machines in the cluster and record the round-trip
time of sending different sizes of keys from the data owner
to the virtual server. The network setup for the virtual server
is bridged which means the virtual server is at the same local
area network as the other three components. For comparative
purpose, we also record the round-trip latency of direct key
distribution from the data owner to the virtual server through
the network. We run each experiment six times and average
the round-trip latency.

As shown in the Figure 8, it is obvious that CloudSafe brings
extra network latency, which grows along with the increasing
of the size of the keys. Note that the network latency caused by
CloudSafe is exaggerated in our experiment. Because the data
owner and virtual server are located in the same LAN in our
experiment, the network latency of Direct Key Distribution
is small. We expect these values would be much larger in
wide area networks. Therefore, the latency gap introduced by
CloudSafe in Figure 8 will be smaller in practice.

We note that the two phase key distribution of CloudSafe
is not necessarily consecutive. When a virtual server needs to
use the data decryption key, the latency for key distribution
is caused by the NFS read and phase two key distribution
as long as phase one key distribution is finished in advance.
We evaluate phase two key distribution through the network
latency from Dom0O and DomU on a single machine. As shown
in the Figure 8, it takes less than 0.001 seconds to deliver a

2048 bits key. With fixed NFS read operation, the runtime
overhead caused by CloudSafe for key distribution should be
at most 0.004 seconds. Given this small overhead, we believe
that CloudSafe brings acceptable network latency.

VII. RELATED WORK

Side-channel attacks on stealing cryptographic keys are not
new threats [9], [23]. Corresponding improvements on cryp-
tographic algorithms have also been extensively discussed [9],
[17], [18], [23]. Most recently, Ford seeks to solve this
problem with deterministic execution and pacing queues to
eliminate the sharing and concurrency in the system [14].
This solution is promising but still at its preliminary stage.
CloudSafe aims to provides means to minimize the attack
window of side-channel attacks with one-time keys while
preserving the system efficiency with acceptable overhead.

With increasing threats towards cloud virtualization envi-
ronments, researchers from both industry and academia have
proposed several solutions to secure current cloud platform.
Researchers in IBM corporation have proposed and realized
virtual trusted platform module (vVTPM) for Xen virtualization
environment to explore the usage of trusted platform module
(TPM) in cloud environment [3]. CloudSafe is compatible
with vTPM in which CloudSafe is able to seal its one-time
data decryption key with vITPM capability. However, without
one-time key strategy, secure key storage cannot prevent
stealing from malicious cloud customers through hidden side-
channels. Song et al. proposed a general framework to build
data-protection-as-service (DPaaS), which integrates various
protection techniques to provide a combined multi-tier protec-
tion mechanisms for the current cloud [22]. Different from
DPaaS which provides general security guidelines for the
cloud, CloudSafe focuses on a specific security issue and is
able to securely and efficiently protect outsourced data and
cryptographic key usage against unauthorized data users and
the cross-VM side channel attacks in the cloud.

Data-centric security research in the cloud focuses on cloud
storage security and access control of outsourced data [11],
[12], [13], [15], [16], [19], [25], [26], [27], [29], [30], [33].
For example, Kamara et al. [15] discussed a general solution
for securing cloud storage by cryptographic techniques. Yu
et al. [29], [30] proposed specific solutions with the help of
attribute-based encryption and proxy re-encryption to secure
and control the access to the outsourced data in cloud stor-
age. Popa et al. [19] built CloudProof, a proof-based cloud
storage which enables a customer to verify the integrity,
write-serializability, and freshness of her data after she stores
them in cloud. CloudSeal [28] leverages due-layer encryption
algorithms to achieve flexible data access control and efficient
content delivery in cloud environment. However it does not
address secure data processing issue. Researchers pointed out
that cryptography alone is not enough for privacy-preserving
computing for cloud applications [24]. CloudSafe augments
cryptographic solutions with a systematic approach to secure
data processing in the cloud by minimizing the damage caused
by side-channel attacks.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed CloudSafe, a framework that provides system-
atic protection for data accessing and processing in vulnerable
public cloud environment. Cross-VM side-channel attack is a
long-term and critical threat to cloud customers. CloudSafe re-
duces the attack surface of side-channel attacks by using one-
time data decryption keys. CloudSafe leverages a dedicated
in-cloud proxy and key distribution framework to achieve
security and performance requirements. Our evaluation with an
implemented prototype confirms that CloudSafe is a practical
solution towards large-scale cloud applications. Our future
work will include improving the scalability of CloudSafe’s key
management and building prototype applications that utilize
CloudSafe.

IX. ACKNOWLEDGEMENTS

We thank anonymous referees for their valuable reviews.
This work was supported in part by NSF grant CAREER CNS-
0953638.

REFERENCES
[1] Amazon EC2 Dedicated Instances. http://aws.amazon.com/
dedicated-instances/.
[2] Gogrid Dedicated Servers, http://www.gogrid.com/products/

infrastructure- dedicated- servers.

[3] IBM Virtual Trust Platform Module. http://researcher.watson.ibm.com/
researcher/view_project.php?id=2850.

[4] OpenSSL Cryptography and SSL/TLS Tookit, http://www.openssl.org/.

[5] Pairing-based Cryptography Library, http://crypto.stanford.edu/pbc/.

[6] Xen. http://xen.org/.

[7]1 M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro. A
Security Analysis of Amazon’s Elastic Compute Cloud Service. In Proc.
of ACM SAC, 2012.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, 1. Pratt, and A. Warfield. Xen and the Art of Virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164-177, Oct. 2003.

[9] D. J. Bernstein. Cache-timing Attacks on AES. Technical report, 2005.
[10] S. Bugiel, S. Niirnberger, T. Poppelmann, A.-R. Sadeghi, and T. Schnei-
der. AmazonlA: When Elasticity Snaps Back. In Proc. of ACM CCS,
2011.

R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and
J. Molina. Controlling Data in the Cloud: Outsourcing Computation
without Outsourcing Control. In Proceedings of CCSW, 2009.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati. Efficient and Private Access to Outsourced Data. In Proc.
of ICDCS, 2011.

S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Over-encryption: Management of Access Control Evolution
on Outsourced Data. In Proc. of VLDB, 2007.

B. Ford. Plugging Side-channel Leaks with Timing Information Flow
Control. In Proc. of USENIX HotCloud, 2012.

S. Kamara and K. Lauter. Cryptographic Cloud Storage. In Financial
Cryptography and Data Security, volume 6054 of Lecture Notes in
Computer Science, pages 136-149. Springer Berlin / Heidelberg, 2010.
M. Li, S. Yu, N. Cao, and W. Lou. Authorized Private Keyword Search
over Encrypted Personal Health Records in Cloud Computing. In Proc.
of ICDCS, 2011.

D. Page. Theoretical Use of Cache Memory As A Cryptanalytic Side-
Channel. Technical Report CSTR-02-003, Department of Computer
Science, University of Bristol, June 2002.

D. Page. Defending against Cache-based Side-channel Attacks. Infor-
mation Security Technical Report, 8(1):30 — 44, 2003.

R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang. Enabling
Security in Cloud Storage SLAs with CloudProof. In Proc. USENIX
ATC, 2011.

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In Proc. of ACM CCS, 2009.

J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. Lo Tacono. All Your Clouds Are Belong to Us: Security Analysis of
Cloud Management Interfaces. In Proc. of ACM CCSW, 2011.

D. Song, E. Shi, I. Fischer, and U. Shankar. Cloud Data Protection for
the Masses. Computer, 45(1):39-45, Jan. 2012.

E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on
AES, and Countermeasures. J. Cryptol., 23(2):37-71, Jan. 2010.

M. Van Dijk and A. Juels. On The Impossibility of Cryptography Alone
for Privacy-preserving Cloud Computing. In Proc. of USENIX HotSec,
2010.

C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou. Toward Secure and
Dependable Storage Services in Cloud Computing. [EEE Trans. Serv.
Comput., 5(2):220-232, Jan. 2012.

C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-Preserving Public
Auditing for Data Storage Security in Cloud Computing. In /EEE
INFOCOM, 2010.

W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and Efficient
Access to Outsourced Data. In Proceedings of CCSW 09, 2009.

H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen. Towards End-to-End
Secure Content Storage and Delivery with Public Cloud. In Proc. of
ACM CODASPY, pages 257-266, 2012.

S. Yu, C. Wang, K. Ren, and W. Lou. Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing. In /IEEE
INFOCOM, 2010.

S. Yu, C. Wang, K. Ren, and W. Lou. Attribute Based Data Sharing
with Attribute Revocation. In Proc. of ACM ASIACCS, 2010.

Y. Zhang, A. Juels, A. Oprea, and M. Reiter. HomeAlone: Co-residency
Detection in the Cloud via Side-Channel Analysis. In IEEE Symposium
on Security and Privacy, pages 313 —328, may 2011.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side
Channels and Their Use to Extract Private Keys. In Proc. of ACM CCS,
2012.

Q. Zheng and S. Xu. Secure and Efficient Proof of Storage with
Deduplication. In Proc. of CODASPY, pages 1-12, 2012.

[21]

[22]
[23]

[24]
[25]
[26]

[27]

[28]
[29]

[30]

(31]
[32]

[33]

APPENDIX

Theorem 1. Given that SE is a CPA secure symmetric encryp-
tion scheme and Decisional Bilinear Diffie-Hellman assump-
tion is hard, the scheme achieves chosen-plaintext security for
ciphertexts generated by PEnc.

Proof In the threat model, the adversary .4 might have one
key of the key pair ((x,t),g"/¥) rather than both. In what
follows, we prove that our scheme achieves CPA security
for ciphertexts generated by PEnc even A has either the re-
encryption key ¢*/¥ or data decryption key (x,t). Note here
we model the keyed hash function F' as a random oracle.

First let A has the re-encryption key g*/¥. We prove that if A
can break the CPA security for ciphertexts generated by PEnc
in our scheme, then we can simulate an challenger breaking
the CPA security of SE.

The challenger first proceeds the security game as the
standard CPA game.

In the challenge phase, A presents M° and M! such
that [M°| = |M!|. The challenge encrypts M* where \ is
randomly selected from {0,1}: Let s = 1 , and compute
r = Fo(H(fid)|0) and y = Fn(H(fid)|[1) where M* is
uniquely identified by the file handler fid. Then it encrypts
M* with SE, s.t. M’ = (M, Mg, -+ ,M;,--- ,M,,) where
M’ = SE.Enc(x, M;) and « is the symmetric key for SE, then
generates the ciphertext as cph = (g¥%, {Me(g, g)*}?"_,). The
challenger returns cph to A.

The challenger continues to proceed the security game as
the standard CPA game and it is allowed to obtain g*/Y.

If A can output X such that A =)\ with non-negligible
advantage, then it means that the challenger can break the
CPA security of SE with no-negligible advantage.

Similarly, we can prove that our scheme achieves CPA
security for ciphertexts generated by PEnc in the case
that A has the data decryption key (z,t) with the Deci-
sional Bilinear Diffie-Hellman assumption. Given the instance
(e,G,Gr,9,9% 6% g% Q), We prove that if A can break the
CPA security for ciphertexts generated by PEnc in our scheme,
then we can simulate an challenger breaking Decisional Bi-
linear Diffie-Hellman assumption.

The challenger first proceeds the security game as the
standard CPA game.

In the challenge phase, A presents MY and M! such that
IMO| = [M1|. The challenge encrypts M* where) is randomly
selected from {0, 1}: Compute x = Fy(H (fid)|0) where M
is uniquely identified by the file handler fid. Then it encrypts
MA with SE, s.t. M’ = (My,My,--- ,M;,--- ,M,,) where
M. = SE.Enc(z,M;) and z is the symmetric key for SE,
then generates the ciphertext as cph = (g%, {M.Q}",), by
selecting z random from Z,, and implicitly letting y = z/abc.
The challenger returns cph to A.

The challenger continues to proceed the security game as
the standard CPA game and it is allowed to obtain (z,t).

If A can output \' such that A = X" with non-negligible ad-
vantage, then it means that the challenger can break the Deci-
sional Bilinear Diffie-Hellman assumption with no-negligible
advantage. [

Theorem 2. Given the one-way property of keyed hash func-
tion F', the master key is secure.

Proof As in the cryptographic scheme, the adversary A can
only obtain x,t,g"/¥, which is related to the master key
mk. Given the one-way property of keyed hash function
F:{0,1}* LA Zy,, A cannot retrieve the master key mk with
non-negligible probability. [

Theorem 3. Assume that the cloud and data users do not
collude. Given one key from the key pair ((x,t),g"/¥), the
probability of inferring the other key is negligible under the
hardness assumption of computing the discrete logarithm.

Proof Given the current data decryption key (z, t), let us con-
sider the probability of inferring ¢*/¥. Note that y only appears
in ¢g¥%, which is part of ciphertexts and s is an unknown
random number. Therefore, the probability of obtaining g*/¥ is
negligible for the computation under the hardness assumption
of computing the discrete logarithm.

Now given the re-encryption key ¢!/¥, the probability of
obtaining ¢ from g%/ is negligible for the computation under
the hardness assumption of computing the discrete logarithm.
In addition, as ¢ is used only once, the probability of getting
(z,t) from g'/¥ is negligible even the adversary has obtained
the previous decryption key (z,t1), ..., (z,t;).0

