
Privacy-Preserving Scanning of Big Content for Sensitive
Data Exposure with MapReduce∗

Fang Liu, Xiaokui Shu, Danfeng (Daphne) Yao and Ali R. Butt
Department Computer Science

Virginia Tech
Blacksburg, VA, USA

{fbeyond, subx, danfeng, butta}@cs.vt.edu

ABSTRACT
The exposure of sensitive data in storage and transmission
poses a serious threat to organizational and personal secu-
rity. Data leak detection aims at scanning content (in stor-
age or transmission) for exposed sensitive data. Because of
the large content and data volume, such a screening algo-
rithm needs to be scalable for a timely detection. Our solu-
tion uses the MapReduce framework for detecting exposed
sensitive content, because it has the ability to arbitrarily
scale and utilize public resources for the task, such as Ama-
zon EC2. We design new MapReduce algorithms for com-
puting collection intersection for data leak detection. Our
prototype implemented with the Hadoop system achieves
225 Mbps analysis throughput with 24 nodes. Our algo-
rithms support a useful privacy-preserving data transfor-
mation. This transformation enables the privacy-preserving
technique to minimize the exposure of sensitive data during
the detection. This transformation supports the secure out-
sourcing of the data leak detection to untrusted MapReduce
and cloud providers.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General—security and protection; C.2.4 [Computer-
Communication Networks]: Distributed System—
distributed applications

Keywords
Data leak detection; MapReduce; Scalability; Collection in-
tersection

1. INTRODUCTION
∗This work has been supported in part by Security and Soft-
ware Engineering Research Center (S2ERC), a NSF spon-
sored multi-university Industry/University Cooperative Re-
search Center (I/UCRC), and ARO YIP W911NF-14-1-
0535.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.
http://dx.doi.org/10.1145/2699026.2699106.

The exposure of sensitive data is a serious threat to the
confidentiality of organizational and personal data. Reports
showed that over 800 million sensitive records were exposed
in 2013 through over 2,000 incidents [13]. Reasons include
compromised systems, the loss of devices, or unencrypted
data storage or network transmission. While many data leak
incidents are due to malicious attacks, a significant portion
of the incidents are caused by unintentional mistakes of em-
ployees or data owners.

There exist several approaches for detecting data exfiltra-
tion, e.g., enforcing strict data-access policies on a host (e.g.,
storage capsule [7]), watermarking sensitive data sets and
tracking data flow anomalies (e.g., DBMS-layer [2]) and in-
specting outbound network traffic for anomalies. In the last
category, the analysis proposed by Borders and Prakash [6]
detects changes in network traffic patterns by searching for
unjustifiable increase in HTTP traffic-flow volume, that in-
dicates data exfiltration. The technique proposed by Shu
and Yao [32] performs deep packet inspection to search for
exposed outbound traffic that bears high similarity to sensi-
tive data. Set intersection is used for the similarity measure.
The intersection is computed between the set of n-grams
from the content and the set of n-grams from the sensitive
data.

This similarity-based detection is versatile, capable of an-
alyzing both text and some binary-encoded context (e.g.,
Word or .pdf files). A naive implementation requiresO(nm)
complexity, where n and m are sizes of the two sets A and B,
respectively. If the sets are relatively small, then a faster im-
plementation is to use a hashtable to store set A and then
testing whether items in B exist in the hashtable or not,
giving O(n+m) complexity.

However, if A and B are both very large (as in our data-
leak detection scenario), a naive hashtable may have hash
collisions that slow down the computation. Increasing the
size of the hashtable may not be practical due to memory
limitation and thrashing.1 One may attempt to distribute
the dataset into multiple hashtables across several machines
and coordinate the nodes to compute set intersections for
leak scanning. However, such a system is nontrivial to im-
plement from scratch and has not been reported in the lit-
erature.

In this paper, we present a data-leak detection system
in MapReduce. MapReduce [14] is a programming frame-
work for distributed data intensive applications. It has been

1We experimentally validated this on a single host. The
results are shown in Table 3 in the appendix.

used to solve security problems such as spam filtering [9,
10], Internet traffic analysis [20] and log analysis [4, 21,
36]. MapReduce algorithms can be deployed on nodes in
the cloud or in local computer clusters.

However, none of these work addressed the privacy re-
quirement of sensitive data, especially when it is outsourced
to a third party for analysis. The reason is that the MapRe-
duce nodes may be compromised or owned by semi-honest
adversaries, who may attempt to gain knowledge of the sen-
sitive data. For example, researchers demonstrated the pos-
sibility of exploring information leakage across VMs through
side channel attacks in third-party compute clouds (e.g.,
Amazon EC2) in [30].

Although private multi-party set intersection methods ex-
ist [18], the high computational overhead is a concern for
time-sensitive security applications such as data-leak detec-
tion.

In this work, we present a new MapReduce-based sys-
tem to detect the occurrences of plaintext sensitive data in
storage and transmission. The detection is distributed and
parallel, capable of screening massive amount of content for
exposed information. We address an important data pri-
vacy requirement. In our privacy-preserving data-leak
detection, MapReduce nodes scan content in data
storage or network transmission for leaks without
learning what the sensitive data is.

Specifically, the data privacy protection is realized with
fast one-way transformation. This transformation requires
the pre- and post-processing by the data owner for hiding
and precisely identifying the matched items, respectively.
Both the sensitive data and the content need to be trans-
formed and protected by the data owner, before it is given to
the MapReduce nodes for the detection. In the meantime,
such a transformation has to support the equality compari-
son required by the set intersection. This technique provides
strong privacy guarantee for the data owner, in terms of the
low probability for a MapReduce node to recover the sensi-
tive data.

Besides the privacy guarantee, another advantage of our
data leak solution is its scalability. Because of the intrinsic
〈key, value〉 organization of items in MapReduce, the worst-
case complexity of our algorithms is correlated to the size
of the leak (specifically a γ ∈ [0, 1] factor denoting the size
of the intersection between the content set and the sensitive
data set). This complexity reduction brought by the γ factor
is significant, because the value is extremely low for normal
content without leak. In our algorithm, items not in the in-
tersection (non-sensitive content) are quickly dropped with-
out further processing. Therefore, the MapReduce-based
algorithms have a lower computational complexity when
compared to the traditional set-intersection implementation.
Our contributions in this paper are as follows.

• We present a series of new MapReduce parallel algo-
rithms for distributedly computing the sensitivity of
content based on its similarity with sensitive data pat-
terns. The similarity is based on collection intersection
(a variant of set intersection that also counts dupli-
cates). The MapReduce-based collection intersection
algorithms are useful beyond the specific data leak de-
tection problem.

• Our detection provides the privacy enhancement to
preserve the confidentiality of sensitive data during the

outsourced detection. Because of this privacy enhance-
ment, our MapReduce algorithms can be deployed in
distributed environments where the operating nodes
are owned by third-party service providers. Applica-
tions of our work include data leak detection in the
cloud and outsourced data leak detection.

• We implement our algorithms using the open source
Hadoop framework. Our prototype outputs the degree
of sensitivity for the content, and pinpoints the occur-
rences of potential leaks in the content. Higher sensi-
tivity values indicate that the content is more likely to
contain sensitive information. Our implementation has
very efficient intermediate data representations, which
significantly minimizes the disk and network I/O over-
head. We performed two sets of experimental evalua-
tions, one on Amazon EC2 and one on a local computer
cluster, using large-scale email data. We achieved 225
Mbps throughput for the privacy-preserving data leak
detection when processing 74 GB of content.

Our MapReduce algorithms reduce the worst-case compu-
tation complexity of set intersection by a factor of γ, where
γ ∈ [0, 1] is the average set intersection rate of the inputs.
Because data leak is a low likelihood event, γ is usually very
small in normal content, making this reduction a significant
improvement.

2. THREAT MODEL AND DESIGN
OVERVIEW

There are two types of input sequences in our data-leak
detection model: content sequences and sensitive data se-
quences.

• Content is the data to be inspected for any occurrences
of sensitive data patterns. The content can be ex-
tracted from file system and network traffic. The de-
tection needs to partition the original content stream
into content segments.

• Sensitive data contains the sensitive information that
cannot be exposed to unauthorized parties, e.g., cus-
tomers’ records, proprietary documents. Sensitive
data can also be partitioned to smaller sensitive data
sequences.

2.1 Threat Model and Security Goal
In our model, two parties participate in the large-scale

data leak detection system: data owner and data-leak de-
tection (DLD) provider.

• Data owner owns the sensitive data and wants to know
whether the sensitive data is leaked. It has the full ac-
cess to both the content and the sensitive data. How-
ever, it only has limited computation and storage ca-
pability and needs to authorize the DLD provider to
help inspect the content for inadvertent data leak.

• DLD provider provides detection service and has un-
limited computation and storage power when com-
pared with data owner. It can perform offline in-
spection without real time delay. However, the DLD
provider is honest-but-curious (aka semi-honest). That
is, it follows the prescribed protocol but may attempt

to gain knowledge of sensitive data. The DLD provider
is not given the access to the plaintext content. It can
perform dictionary attack on the signature of sensitive
data records.

Our goal is to offer DLD provider solutions to scan mas-
sive content for sensitive data exposure and minimize the
possibility that the DLD provider learns about the sensitive
information.

• Scalability: the ability to process content at a variety
of scales, e.g., megabytes to terabytes, enabling the
DLD provider to offer on-demand content inspection.

• Privacy: the ability to keep the sensitive data con-
fidential, not disclosed to the DLD provider or any
attacker breaking into the detection system.

• Accuracy: the ability to identify all leaks and only
real leaks in the content, which implies low false neg-
ative/positive rates for the detection.

Our framework is not designed to detect intentional data
exfiltration, during which the attacker may encrypt or trans-
form the sensitive data.

2.2 Computation Goal
Our detection is based on computing the similarity be-

tween content segments and sensitive data sequences, specif-
ically the intersection of two collections of n-grams. n-grams
captures local features of a sequence and have also been used
in other sequence similarity methods (e.g., web search dupli-
cation [8]). Following the terminology proposed by Broder
et al. [8], we also refer to n-gram as shingle.

One collection consists of shingles obtained from the con-
tent segment and the other collection consists of shingles
from the sensitive sequence. Collection intersection differs
from set intersection, in that it also records duplicated items
in the intersection, which is illustrated in Figure 1. Record-
ing the frequencies of intersected items achieves more fine-
grained detection. Thus, collection intersection is preferred
for data leak analysis than set intersection.

I: abcdabcdabcda

II: bcdadcdabcda
I: {abc, bcd, cda, dab, abc bcd, cda, dab, abc, bcd, cda}
II: {bcd, cda, dad, adc, dcd, cda, dab, abc, bcd, cda}

Collection intersection: {abc, dab, bcd, bcd, cda, cda, cda}Set intersection: {abc, dab, bcd, cda}

Strings: N-gram collections:

Set intersection rate: 4/10=0.4

Collection size:

11
10

Collection intersection rate: 7/10=0.7

Figure 1: An example illustrating the difference between
set intersection and collection intersection in handling du-
plicates for 3-grams.

Notation used in our algorithms is shown in Table 1, in-
cluding collection identifier CID, size CSize (in terms of the
number of items), occurrence frequency Snum of an item in
one collection, occurrence frequency Inum of an item in an
intersection, and intersection rate Irate of a content collec-
tion with respect to some sensitive data.

Formally, given a content collection Cc and a sensitive
data collection Cs, our algorithms aim to compute the inter-
section rate Irate ∈ [0, 1] defined in Equation 1, where Inum
is the occurrence frequency of an item i in the intersection
Cs ∩ Cc (defined in Table 1). The sum of frequencies of all

items appeared in the collection intersection is normalized
by the size of the sensitive data collection, which yields the
intersection rate Irate. The rate represents the percentage
of sensitive data that appears in the content. Irate is also
referred to as the sensitivity score of a content collection.

Irate =

∑
i∈{Cs∩ Cc}

Inumi

|Cs|
(1)

Syntax Definition

CID An identifier of a collection (content or sen-
sitive data)

CSize Size of a collection
Snum Occurrence frequency of an item
Inum Occurrence frequency of an item in an in-

tersection
CSid A pair of CIDs 〈CID1, CID2〉, where

CID1 is for a content collection and CID2

is for a sensitive data collection
Irate Intersection rate between a content collec-

tion and a sensitive data collection as de-
fined in Equation 1. Also referred to as the
sensitivity score of the content.

ISN A 3-item tuple of a collection 〈identifier
CID, size CSize, and the number of items
in the collection〉

CSS An identifier for a collection intersection,
consisting of a ID pair CSid of two collec-
tions and the size of the sensitive data col-
lection CSize

Table 1: Notation used in our MapReduce algorithms.

2.3 Confidentiality of Sensitive Data
Naive collection-intersection solutions performing on shin-

gles provide no protection for the sensitive data. The reason
is that MapReduce nodes can easily reconstruct sensitive
data from the shingles. Our detection utilizes several meth-
ods for the data owner to transform shingles before they
are released to the MapReduce nodes. These transforma-
tions, including specialized hash function, provide strong-
yet-efficient confidentiality protection for the sensitive in-
formation. In exchange for these privacy guarantees, the
data owner needs to perform additional data pre- and post-
processing operations.

In addition to protecting the confidentiality of sensitive
data, the pre-processing operations also need to satisfy fol-
lowing requirements:

• Equality-preserving: the transformation operation
should be deterministic so that two identical shingles
within one session are always mapped to the same item
for comparison.

• One-wayness: the function should be easy to compute
given any shingle and hard to invert given the output
of a sensitive shingle.

Our collection intersection (in Section 3) is computed on
one-way hash values of n-grams, specifically Rabin finger-
prints. Rabin fingerprint is a fast one-way hash function,
which is computational expensive to invert.

Specifically, Rabin fingerprint of a n-bit shingle is based on
the coefficients of the remainder of the polynomial modular
operation with an irreducible polynomial p(x) as the modulo
as shown in Equation 2, where cn−i+1 is the i-th bit in the
shingle.

f = c1x
n−1 + c2x

n−2 + ...+ cn−1x+ cn mod p(x) (2)

Section 4 presents the security analysis of our approach
especially on the confidentiality of sensitive data.

2.4 Workload Distribution
The details on how the workload is distributed between

data owner and DLD provider is as follows and shown in
Figure 2:

1. Data owner has m sensitive sequences
{S1, S2, · · · , Sm} with average size S ′ and n con-
tent segments {C1, C2, · · · , Cn} with average size C′.
It obtains shingles from the content and sensitive data
respectively. Then it chooses the public parameters
(n, p(x), L), where n is the length of shingle, p(x) is
the irreducible polynomial and L is the fingerprint
length. The data owner computes Rabin fingerprints
with Equation 2 and releases the sensitive collec-
tions {CS1, CS2, · · · , CSm} and content fingerprint
collections {CC1, CC2, · · · , CCn} to the DLD provider.

2. DLD provider receives both the sensitive fingerprint
collections and content fingerprint collections. It de-
ploys MapRecuce framework and compares the n con-
tent collections with the m sensitive collections using
our two-phase MapReduce algorithms. By comput-
ing the intersection rate of each content and sensitive
collections pair, it outputs whether the sensitive data
was leaked and reports all the data leak alerts to data
owner.

3. Data owner receives the data leak alerts with a
set of tuples {(CCi, CSj), (CCk, CSl), · · · }. The
data owner maps them to suspicious content seg-
ments and the plain sensitive sequences tuples
{(Ci, Sj), (Ck, Sl), · · · }. The data owner consults
plaintext content to confirm that true leaks (as op-
posed to accidental matches) occur in these content
segments and further pinpoint the leak occurrences.

Pre-processing:
Rabin fingerprints generation

Detection:
MapReduce-based set intersection and
suspicous content segements selection

Post-processing:
identify true data leaks with plaintext

Data Owner DLD Provider

1

3

2

Figure 2: Workload distribution for DLD provider and data
owner.

2.5 MapReduce-Based Design and Chal-
lenges

MapReduce is a programming model for processing large-
scale data sets on clusters. A MapReduce algorithm has

two phases: map that supports the distribution and parti-
tion of inputs to nodes, and reduce that groups and inte-
grates the nodes’ outputs. MapReduce data needs to be in
the format of 〈key, value〉 pair, where key serves as an in-
dex and the value represents the properties corresponding to
the key/data item. A complex problem may require several
rounds of map and reduce operations, requiring redefining
and redistributing 〈key, value〉 pairs between rounds.

There exist several MapReduce-specific challenges when
realizing collection-intersection based data leak detection.

1. Complex data fields Collection intersection with du-
plicates is more complex than set intersection. This re-
quires the design of complex data fields for 〈key, value〉
pairs and a series of map and reduce operations.

2. Memory and I/O efficiency The use of multi-
ple data fields (e.g., collection size and ID, shingle
frequency) in 〈key, value〉 pairs may cause frequent
garbage collection and heavy network and disk I/O.

3. Optimal segmentation of data streams While
larger segment size allows the full utilization of CPU,
it may cause insufficient memory problem and reduced
detection sensitivity.

Our data-leak detection algorithms in MapReduce ad-
dresses these technical challenges in MapReduce framework
and achieves the security and privacy goals. We design
structured-yet-compact representations for data fields of in-
termediate values, which significantly improves the efficiency
of our algorithms. Our prototype also realizes an additional
post-processing partitioning and analysis, which allows one
to pinpoint the leak occurrences in large content segments.
We experimentally evaluate the impact of segment sizes on
detection throughput and identify the optimal segment size
for performance.

2.6 Detection Workflow
To compute the intersection rate of two fingerprint collec-

tions Irate, we design two MapReduce algorithms, Divider
and Reassembler, each of which has a map and a reduce op-
eration. Map and reduce operations are connected through
a redistribution process. During the redistribution, outputs
from map (in the form of 〈key, value〉 pairs) are sent to re-
ducer nodes, as the inputs to the reduce algorithm. The
key value of a record decides to which reducer node the it is
forwarded. Records with the same key are sent to the same
reducer.

1. Divider takes the following as inputs: fingerprints of
both content and sensitive data, and the information
about the collections containing these fingerprints. Its
purpose is to count the number of a fingerprint’s occur-
rences in a collection intersection (i.e., Inum in Equa-
tion 1) for all fingerprints in all intersections.

In map operation, it re-organizes the fingerprints to
identify all the occurrences of a fingerprint across mul-
tiple content or sensitive data collections. Each map

instance processes one collection. This reorganization
traverses the list of fingerprints. Using the fingerprint
as the key, it then emits (i.e., redistributes) the records
with the same key to the same node.

In reduce, for each fingerprint in an intersection the
algorithm computes the Inum value, which is its num-
ber of occurrences in the intersection. Each reduce

instance processes one fingerprint. The algorithm out-
puts the tuple 〈CSS, Inum〉, where CSS is the identifier
of the intersection (consisting of IDs of the two collec-
tions and the size of the sensitive data collection2).
Outputs are written to MapReduce file system.

2. Reassembler takes as inputs 〈CSS, Inum〉 (outputs
from Algorithm Divider). The purpose of this algo-
rithm is to compute the intersection rates (i.e., Irate in
Equation 1) of all collection intersections {Cci ∩ Csj}
between a content collection Cci and a sensitive data
collection Csj .

In map, the inputs are read from the file system, and
redistributed to reducer nodes according to the iden-
tifier of an intersection CSS (key). A reducer has as
inputs the Inum values for all the fingerprints appear-
ing in a collection intersection whose identifier is CSS.
At reduce, it computes the intersection rate of CSS
based on Equation 1.

In the next section, we present our algorithms for realizing
the collection intersection workflow with one-way Rabin fin-
gerprints. In Section 4, we explain why our privacy preserv-
ing technique is able to protect the sensitive data against
semi-honest MapReduce nodes and discuss the causes of
false alarms and the limitations.

3. COLLECTION INTERSECTION IN
MAPREDUCE

We present our collection-intersection algorithm in the
MapReduce framework. The algorithm computes the inter-
section rate of two collections as defined in Equation 1. Each
collection consists of Rabin fingerprints of n-grams gener-
ated from a sequence (sensitive data or content).

RecordReader is a (standard) MapReduce class. We
customize it to read initial inputs into our detection system
and transform them into the 〈key, value〉 format required by
the map function. The initial inputs of our RecordReader
are content fingerprints segments and sensitive fingerprints
sequences. For the Divider algorithm, the RecordReader
has two tasks: i) to read in each map split (e.g., content
segment) as a whole and ii) to generate 〈CSize, fingerprint〉
pairs required by the map operation of Divider algorithm.

3.1 Divider Algorithm
Divider is the most important and computational inten-

sive algorithm in our system. Pseudocode of Divider is
given in Algorithm 1. In order to count the number of
a fingerprint’s occurrences in a collection intersection, the
map operation in Divider goes through the input 〈CSize,
fingerprint〉 pairs, and reorganizes them to be indexed by
fingerprint values. For each fingerprint in a collection, map
records its origin information (e.g., CID, CSize of the collec-
tion) and Snum (fingerprint’s frequency of occurrence in the
collection). These values are useful for later intersection-rate
computation.

2The sensitive data collection is typically much smaller than
the content collection.

Algorithm 1 Divider: To count the number of a finger-
print’s occurrences in a collection intersection for all finger-
prints in all intersections.

Input: Output of RecordReader in a format of 〈CSize,
Fingerprint〉 as 〈key, value〉 pair.
Output: 〈CSS, Inum〉 as 〈key, value〉 pair, where CSS contains
content collection ID, sensitive data collection ID and the size of
the sensitive data collection. Inum is occurrence frequency of a
fingerprint in the collection intersection.

1: function Divider::Mapper(CSize, Fingerprint)
2: . Record necessary information for the collection.
3: ISN←CID, CSize and Snum
4: Emit〈Fingerprint, ISN〉
5: end function

1: functionDivider::Reducer(Fingerprint, ISNlist[c1, . . . , cn])
2: j = 0, k = 0
3: . Divide the list into a sensitive list and a content list
4: for all ci in ISNlist do
5: if ci belongs to sensitive collections then
6: SensList[++j]← ci
7: else
8: ContentList[+ + k]← ci
9: end if

10: end for
11: . Record the fingerprint occurrence in the intersection
12: for all sens in SensList do
13: for all content in ContentList do
14: Size ←sens.CSize
15: Inum ←Min(sens.Snum, content.Snum)
16: CSS← 〈content.CID, sens.CID, Size〉
17: Emit 〈CSS, Inum〉
18: end for
19: end for
20: end function

Steps of our MapReduce algorithms are illustrated with a
running example (with four MapReduce nodes) in Figure 3.
The example has two content collections C1 and C2, and
two sensitive data collections S1 and S2. The sizes of their
corresponding collections are 3, 4, 3 and 3, respectively. E.g.,
in node 1 of Figure 3, map outputs the pair 〈a, (C1, 3, 1)〉,
indicating fingerprint (key) a is from content collection C1

of size 3 and occurs once in C1.
The advantage of using the fingerprint as the key in the

map’s outputs is that it allows the reducer to quickly iden-
tify non-intersected items. After redistribution, entries hav-
ing the same fingerprint are sent to the same reducer node
as inputs to the reduce algorithm. E.g., in Figure 3, all oc-
currences of fingerprint a are sent to node 1, including two
occurrences from content collections C1 and C2, one occur-
rence from sensitive data collection S1.

Reduce algorithm is more complex than map. It parti-
tions the occurrences of a fingerprint into two lists, one list
(ContentList) for the occurrences in content collections and
one for sensitive data (SensList). It then uses a double for-
loop to identify the fingerprints that appear in intersections,
e.g., a. Non-intersected fingerprints are not analyzed, signifi-
cantly reducing the computational overhead. This reduction
is reflected in our computational complexity analysis in Ta-
ble 2, specifically the γ ∈ [0, 1] reduction factor representing
the size of intersection.

The for-loops also compute the occurrence frequency Inum
of the fingerprint in an intersection. E.g., for node 3 in Fig-
ure 3, d appears once in C1∩S1 and once C1∩S2. The output

<CSize, Fingerprint> <Fingerprint, ISN> <Fingerprint, ISN> <CSS, Inum> <CSS, Inum>

<CSid, I_rate>

Divider Reassembler

<(C1,S1), 3/3>
<(C2,S1), 1/3>
<(C1,S2), 1/3>
<(C2,S2), 2/3>

<(C2,S2,3), 2>

<(C1,S1,3), 1>
<(C2,S1,3), 1>

<(C1,S1,3), 1>

<(C1,S1,3), 1>
<(C1,S2,3), 1>

<(C2,S2,3), 2>

<a, (C1,3,1)>
<a, (C2,4,1)>
<a, (S1,3,1)>

<b, (C1,3,1)>
<b, (S1,3,1)>

<d, (C1,3,1)>
<d, (S1,3,1)>
<d, (S2,3,1)>

<c, (C2,4,1)>
<h, (C2,4,2)>
<h, (S2,3,2)>

<a, (C1,3,1)>
<b, (C1,3,1)>
<d, (C1,3,1)>

<a, (C2,4,1)>
<c, (C2,4,1)>
<h, (C2,4,2)>

<a, (S1,3,1)>
<b, (S1,3,1)>
<d, (S1,3,1)>

<d, (S2,3,1)>
<h, (S2,3,2)>

<3, a>
<3, b>
<3, d>

<4, a>
<4, h>
<4, c>
<4, h>

<3, a>
<3, b>
<3, d>

<3, d>
<3, h>
<3, h>

MRNode1:
{a, b, d}
Collection ID (CID): C1

Collection size (CSize): 3

<(C1,S1,3), 1>
<(C1,S1,3), 1>
<(C1,S1,3), 1>

<(C2,S1,3), 1>

<(C1,S2,3), 1>

MRNode2:
{a, h, c, h}
Collection ID (CID): C2

Collection size (CSize): 4

MRNode3:
{a, b, d}
Collection ID (CID): S1

Collection size (CSize): 3

MRNode4:
{d, h, h}
Collection ID (CID): S2

Collection size (CSize): 3

M

M

M

M

R

R

R

R

M&Redi

R

Redi

Figure 3: A Running example illustrating Divider and Reassembler algorithms, with four MapReduce nodes, two content
collections C1 and C2, and two sensitive data collections S1 and S2. M, R, Redi stand for map, reduce, and redistribution,
respectively. 〈key, value〉 of each operation is shown at the top.

of the algorithm is the 〈CSS, Inum〉 pairs, indicating that
a fingerprint occurs Inum number of times in a collection
intersection whose identifier is CSS.

3.2 Reassembler Algorithm

Algorithm 2 Reassembler: To compute the intersection
rates Irate of all collection intersections {Cci ∩Csj} between
a content collection Cci and a sensitive data collection Csj .

Input: Output of Divider in a format of 〈CSS, Inum〉 as
〈key, value〉 pairs.
Output: 〈CSid, Irate〉 pairs where CSid represents a pair of a
content collection ID and a sensitive collection ID, while Irate
represents the intersection rate between them

1: function Reassembler::Mapper(CSS, Inum)
2: Emit〈CSS,Inum〉
3: end function

1: function Reassembler::Reducer(CSS, Inum[n1, . . . , nn])
2: intersection ← 0
3: . Add up all the elements in Inum[]
4: for all ni in Inum[] do
5: intersection ← intersection + ni

6: end for
7: CSid ← CSS.CSid
8: . Compute intersection rate

9: Irate ← |intersection|
CSS.CSize

10: Emit 〈CSid, Irate〉
11: end function

The purpose of Reassembler is to compute the intersec-
tion rates Irate of all collection-and-sensitive-data intersec-
tions. Pseudocode of Reassembler is in Algorithm 2. The
map operation in Reassembler emits (i.e., redistributes)
inputs 〈CSS, Inum〉 pairs according to their key CSS values
to different reducers. The reducer can then compute the
intersection rate Irate for the content and sensitive data col-
lection pair. I.e., this redistribution sends all the intersected

items between a content collection Cci and a sensitive data
collection Csj to the same reducer. E.g., in Figure 3, all the
pairs with (C1, S1, 3) as key are sent to MapReduce node 1.
In node 1, the total number of fingerprints shared by C1 and
S1 is 3. The intersection rate is 1.

Complexity Analysis The computational and communica-
tion complexities of various operations of our algorithm are
shown in Table 2. We denote the average size of a sensitive
data collection by S, the average size of a content collec-
tion by C, the number of sensitive data collections by m,
the number of content collections by n, and the average in-
tersection rate by γ ∈ [0, 1]. Without loss of generality, we
assume that |S| < |C| and |Sm| < |Cn|. We do not include
post-processing in complexity analysis. Our total commu-
nication complexity O(Cn + Smnγ) covers the number of
records (〈key, value〉 pairs) that all operations output. For
a hashtable-based (non-MapReduce) approach, where each
content collection is stored in a hashtable (total n hashta-
bles of size C each) and each sensitive data item (total Sm
items) is compared against all n hashtables, the computa-
tional complexity is O(Cn+ Smn).

4. SECURITY ANALYSIS AND DISCUS-
SION

MapReduce nodes that perform the data-leak detection
may be controlled by honest-but-curious providers (aka
semi-honest), who follow the protocol, but may attempt to
gain knowledge of the sensitive data information (e.g., by
logging the intermediate results and making inferences). We
analyze the security and privacy guarantees provided by our
MapReduce based data leak detection system. The privacy
goal of our system is to prevent the sensitive data from being
exposed to DLD provider or untrusted nodes.

Privacy guarantee Let fs be the Rabin fingerprint of
sensitive data shingle s. Using the algorithms in Section 3,
a MapReduce node knows fingerprint fs but not shingle s of
the sensitive data. We assume that attackers are not able to

Algorithm Comp. Comm.
Our Pre-processing O(Cn+ Sm) O(Cn+ Sm)
Our Divider::M. O(Cn+ Sm) O(Cn+ Sm)
Our Divider::R. O(Cn+ Smnγ) O(Smnγ)
Our Reassembler::M. O(Smnγ) O(Smnγ)
Our Reassembler::R. O(Smnγ) O(mn)

Our Total O(Cn+ Smnγ) O(Cn+ Smnγ)

Hashtable O(Cn+ Smn) N/A

Table 2: Computation and communication complexity of
each phase in our MapReduce algorithm and that of the
conventional hashtable-based approach. We denote the av-
erage size of a sensitive data collection by S, the average
size of a content collection by C, the number of sensitive
data collections by m, the number of content collections by
n, and the average intersection rate by γ ∈ [0, 1].

infer s in polynomial time from fs. This assumption is guar-
anteed by the one-way Rabin fingerprinting function [29].

In addition, the data owner chooses a different irreducible
polynomial p(x) for each session. Under this configuration,
the same shingle is mapped to different fingerprints in mul-
tiple sessions. The advantage of this design is the increased
randomization in the fingerprint computation, making it
more challenging for the DLD provider to correlate values
and infer preimage. This randomization also increases the
difficulty of dictionary attacks. Other cryptographic mech-
anisms, e.g., XORing a secret session key with content and
sensitive data before fingerprinting, achieve similar security
improvement. Because the transformation needs to preserve
equality comparison (in Section 2.3), the configuration needs
to be consistent within a session.

Collisions Two types of collisions are involved in our
detection framework: fingerprint collisions and coincidental
matches. Fingerprint collisions rarely happen as long as the
length of fingerprint is sufficiently long (64 bits fingerprints
are sufficient long with the collision probability being less
than 10−6, according to the study by Broder [8]). Coinci-
dental match occurs when some shingles in content happens
to mach some in sensitive data. These shingle matches may
be due to shorter shingles, large content segment or sensitive
data containing widely used patterns. With proper shingle
length and threshold setting, the detection accuracy would
not be affected by the coincidental matches. We perform
accuracy experiment in Section 5.4, which shows that the
intersection rate for normal leak is much higher than that
caused by coincidental matches.

Our data leak detection framework is designed to detect
accidental data leaks in content, instead of intentional data
exfiltration. In intentional data exfiltration, which cannot be
detected by deep packet inspection, an attacker may encrypt
or transform the sensitive data.

5. IMPLEMENTATION AND EVALUA-
TION

We implement our algorithms with Java in Hadoop, which
is an open-source software system implementing MapRe-
duce. We set the length of fingerprint and shingle to 8 bytes
(64 bits). This length was previously reported as optimal
for robust similarity test [8], as it is long enough to pre-
serve some local context and short enough to resist certain

transformations. Our prototype implements an additional
IP-based post-processing analysis and partition focusing on
the suspicious content. It allows the data owner to pinpoint
the IPs of hosts where leaks occur. We output the suspicious
content segments and corresponding hosts.

We make several technical measures to reduce disk and
network I/O. We use (structured) SequenceFile format as
the intermediate data format. We minimize the size of 〈key,
value〉 pairs. E.g., the size of value after map in Divider is 6
bytes on average. We implement Combination classes that
significantly reduce the amount of intermediate results writ-
ten to the distributed file systems (DFS). This reduction
in size is achieved by aggregating same 〈key, value〉 pairs.
This method reduces the data volume by half. We also en-
able Hadoop compression, which gives as high as 20-fold size
reduction.

We deploy our algorithms in two different 24-node Hadoop
systems, a local cluster and Amazon Elastic Compute Cloud
(EC2). For both environments, we set one node as master
node and the rest as slave nodes.

• Amazon EC2: 24 nodes each having a c3.2xlarge in-
stance with 8 CPUs and 15 GB RAM.

• Local cluster: 24 nodes each having two quad-core 2.8
GHz Xeon processors and 8 GB RAM.

We use the Enron Email Corpus, including both email
header and body to perform the performance experiments.
The entire dataset is used as content and a small subset of
it as the sensitive data. For the accuracy experiment, we
use 10 academic research paper as the sensitive data and
transformed Enron emails as content (insert </br> at each
new line).

Our experiments aim to answer the flowing questions.

1. How does the size of content segment affect the anal-
ysis throughput? (Section 5.1)

2. What is the throughput of our analysis on Amazon
EC2 and the local clusters? (Section 5.2)

3. How does the size of sensitive data affect the detection
performance? (Section 5.3)

4. What is the detection accuracy of our data leak detec-
tion system? (Section 5.4)

Suppose we have n content segments with s of them con-
taining sensitive sequences (s < n). During the detec-
tion, the content segments with intersection rates above the
threshold t raise alerts in our detection algorithms. Suppose
m content segments raise the alerts and s′ of them are true
leak instances. Then, we define the following metrics:

• detection rate as s′

s
.

• false positive rate as m−s′

n−s
.

5.1 Optimal Size of Content Segment
Content volume is usually overwhelmingly larger than sen-

sitive data, as new content is generated continuously in stor-
age and in transmission. Thus, we evaluate the throughput
of different sizes and numbers of content segments in order
to find the optimal segment size for scalability. A content
segment with size Ĉ is the original sequence that is used to

0 10 20 30 40 50 60 70 80
Content Segment Size (MB)

80

100

120

140

160

180

200

220
Th

ro
ug

hp
ut

(M
bp

s)

Sensitive data size
0.5MB
0.9MB

1.4MB
1.9MB

Figure 4: Throughput with different
sizes of content segments. For each setup
(line), the size of the content analyzed is
37 GB.

0 500 1000 1500 2000
Number of Content Segments

100

120

140

160

180

200

220

240

Th
ro

ug
hp

ut
(M

bp
s)

Sensitive data size
0.5MB
0.9MB

1.4MB
1.9MB

0 10 20 30 40 50 60 70
Total Content Size (GB)

Figure 5: Throughput with different
amount of content workload. Each con-
tent segment is 37 MB.

0 5 10 15 20 25
Number of Nodes

0

50

100

150

200

250

Th
ro

ug
hp

ut
(M

bp
s)

Our Cluster
EC2

Figure 6: Throughput with different
number of nodes on a local cluster or
Amazon EC2.

generate the n-gram content collection. A sensitive sequence
with size Ŝ is the original sequence that is used to generate
the n-gram sensitive collection.

The total size of content analyzed is 37 GB, which consists
of multiple copies of Enron data. Detection performance
under different content segment sizes (from 2 MB to 80 MB)
is measured. We vary the size of sensitive data from 0.5 MB
to 2 MB. The results are shown in Figure 4.

We observe that when Ĉ < 37 MB, the throughput of our
analysis increases with the size Ĉ of content segment. When
Ĉ becomes larger than 37 MB, the throughput begins to
decrease. The reason for this decrease is that more compu-
tation resources are spend on garbage collection with larger
Ĉ. There are over 16 processes running at one nodes at the
same time. We assign 400 MB memory for each process to
process 37x8 MB shingles. Thus, we set the size of content
segments to 37 MB for the rest of our experiments. This
size also allows the full utilization of the Hadoop file sys-
tem (HDFS) I/O capacity without causing out-of-memory
problems.

We also evaluate the throughput under a varying number
of content segments n, i.e., workload. The results are shown
in Figure 5, where the total size of content analyzed is shown
at the top X-axis (up to 74 GB). Throughput increases as
workload increases as expected.

In both experiments, the size of sensitive data is small
enough to fit in one collection. Larger size of sensitive
data increases the computation overhead, which explains the
slight decrease in throughput in both Figures 4 and 5.

5.2 Scalability
For scalability evaluation, we processed 37 GB content

with different numbers of nodes, 4, 8, 12, 16, 20, and 24.
The experiments were deployed on both on the local cluster
and on Amazon EC2. Our results are shown in Figure 6.
The system scales well, as the throughput linearly increases
with the number of nodes. The peak throughput observed
is 215 Mbps on the local cluster and 225 Mbps on Amazon
EC2. EC2 cluster gives 3% to 11% performance improve-
ment. This improvement is partly due to the larger memory.
The standard error bars of EC2 nodes are shown in Figure 6
(from three runs). Variances of throughputs on the local
cluster are negligible.

We break down the total overhead based on the Divider
and Reassembler operations. The results are shown in

Figure 7 with the runtime (Y-axis) in a log scale. Divider
algorithm is much more expensive than Reassembler, ac-
counting for 85% to 98% of the total runtime. With increas-
ing content workload, Divider’s runtime increases, more
significantly than that of Reassembler.

These observations are expected, as Divider algorithm is
more complex. Specifically, both map and reduce in Divider
need to touch all content items. Because of the large con-
tent volume, these operations are expensive. In comparison,
Reassembler algorithm only touches the intersected items,
which is substantially smaller for normal content without
leaks. These experimental results are consistent with our
complexity analysis in Table 2.

5.3 Performance Impact of Sensitive Data
We reorganize the performance results in Figure 4 so that

the sizes of sensitive data are shown at the X-axis. The new
figure is Figure 8, where each setup (line) processes 37 GB
data and differs in their size for content segment. There are a
few observations. First, smaller content segment size incurs
higher computational overhead, e.g., for keeping tracking
the collection information (discussed in Section 5.1).

The second observation is that the runtime increases as
the size of sensitive data increases, which is expected. Ex-
periments with the largest content segment (bottom line in
Figure 8) have the smallest increase, i.e., the least affected
by the increasing volume of sensitive data.

This difference in intercept is explained next. The total
computation complexity is O(Cn + Smnγ) (Table 2). In
O(Cn+ Smnγ), nγ serves as the coefficient (i.e., intercept),
as the total size Sm of sensitive data increases, where n is the
number of content segments. When 37 GB content is broken
into small segments, n is large. A larger coefficient magnifies
the increase in sensitive data, resulting in more substantial
overhead increase. Therefore, the line at the bottom of Fig-
ure 8 represents our recommended configuration with a large
37 MB content segment size.

5.4 Detection Accuracy
We used Enron emails as content and 10 academic papers

as sensitive data. We pre-processed the content into four
types: content not containing sensitive data (Cc), content
containing sensitive data (Cs), transformed content not con-
taining sensitive data (Tc) and transformed content contain-
ing sensitive data (Ts). We transformed the content data by

0 500 1000 1500 2000
Number of Content Segments

101

102

103

104

Ti
m

e
(S

ec
on

ds
,l

og
sc

al
e)

Divider
Reassembler

0 10 20 30 40 50 60 70
Total Content Size (GB)

Figure 7: Runtime of Divider and Re-
assembler algorithms. The Divider
operation takes 85% to 98% of the to-
tal runtime. The Y-axis is in 10 based
log scale.

0.5 1.0 1.5 2.0
Sensitive Data Size (MB)

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
on

d)

Content segment size
36MB
18MB

9MB
4MB

2MB

Figure 8: Runtime with a vary size of
sensitive data. The content volume is
37.5 GB for each setup. Each setup
(line) has a different size for content seg-
ments.

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity Threshold

0.0
0.2
0.4
0.6
0.8
1.0

D
et

ec
tio

n
R

at
e

(a)

No Insertion With Insertion

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity Threshold

0.0
0.2
0.4
0.6
0.8
1.0

Fa
ls

e
Po

si
tiv

e
R

at
e

(b)

Figure 9: Detection accuracy with dif-
ferent threshold. The detection rate is
1 with very low false positive rate when
the thresholds ranges from 0.18 to 0.8.
In Figure (b), the false positive rates of
the two lines are very close.

inserting </br> at each new line. Detection rates are com-
puted from Cs and Ts. If alerts are raised by the segments
from these two types of data, the alerts are true positives.
The false positive rates are computed from Cc and Tc. If
alerts are are raised by segments from these two types of
data, the alerts are false positives. Our results on false pos-
itive rates and detection rates are shown in Figure 9.

With sensitivity threshold ranging from 0.18 to 0.82, the
detection rate is 1, with 0 false positive rate for both the
transformed leak and the non-transformed leak. The false
positive rates of transformed data leak and non-transformed
data leak are very close (the two lines mostly overlap). The
false positive rate of the transformed data leak is on average
2.55% lower than that of the non-transformed leak, when
the sensitivity threshold is smaller than 0.18. When the
sensitivity threshold ranges from 0.3 to 0.7, our detection
rate is 1 and false positive rate is 0.

Summary We summarize our experimental findings below.

1. Our MapReduce-based data leak detection algorithms
linearly scale with the number of nodes. We achieved
225 Mbps throughput on Amazon EC2 cluster and a
similar throughput on our local cluster. Divider algo-
rithm accounts for 85% to 98% of the total runtime.

2. We observed that larger content segment size Ĉ (up
to 37 MB) gives higher performance. This observation
is due to the decreased amount of bookkeeping infor-
mation for keeping track of collections, which results
in significantly reduced I/O overhead associated with
intermediate results.

When the content segment size Ĉ is large (37 MB), we
observed that the increase in the amount of sensitive
data has a relatively small impact on the runtime. Give
the content workload, larger Ĉ means fewer number of
content segments, resulting in a smaller coefficient.

3. We validated that our detection system has high de-
tection accuracy for some transformed data leaks. By
setting the threshold to be a proper value, our algo-
rithms can detect the leaks with low false alerts.

4. Limitations Our method is designed for detecting ac-
cidental data exposure in content, but not for inten-

tional data exfiltration, which typically uses strong en-
cryption. Detecting malicious data leaks, in particular
those by insiders, is still an active research area. Co-
incidental matches may generate false positives in our
detection, e.g., an insensitive phone number in the con-
tent happens to match part of a sensitive credit card
number. A possible mitigation is for the data owner to
further inspect the context surrounding the matching
shingles and interpret its semantics.

6. RELATED WORK
One may adopt network-based and/or host-based ap-

proaches to prevent personal or organizational sensitive in-
formation from being leaked. Solutions from both paradigms
are necessary, and complementary to each other.

Borders and Prakash [6] presented a network-analysis ap-
proach for estimating information leak in the outbound traf-
fic. The method identifies anomalous and drastic increase
in the amount of information carried by the traffic. The
method was not designed to detect small-scale data leak.
In comparison, our technique is based on intersection-based
pattern matching analysis. Thus, our method is more sensi-
tive to small and stealthy leaks than the approach in [6]. In
addition, our analysis can also be applied to content in data
storage (e.g., data center), besides network traffic.

Croft and Caesar [12] compared two logical copies of net-
work traffic to control the movement of sensitive data. The
work by Papadimitriou and Garcia-Molina [26] aims at find-
ing the agents that leaked the sensitive data. Shu and
Yao [32] presented privacy-preserving methods for protect-
ing sensitive data in a non-MapReduce based detection en-
vironment. Shu et al. [33] further proposed to accelerate
screening transformed data leaks using GPU. Blanton et
al. [5] proposed a solution for fast outsourcing of sequence
edit distance and secure path computation, while preserving
the confidentiality of the sequence.

Examples of host-based approaches include Auto-FBI [43]
and Aquifer [23]. Auto-FBI guarantees the secure access of
sensitive data on the web. It achieves this guarantee by au-
tomatically generating a new browser instance for sensitive
content. Aquifer is a policy framework and system. It helps
prevent accidental information disclosure in OS.

MapReduce framework was used to solve problems in data
mining [41], machine learning [25], database [4, 35], and
bioinformatics [22]. MapReduce algorithms for computing
document similarity (e.g., [1, 15, 39]) involve pairwise sim-
ilarity comparison. Similarity measures may be Hamming
distance, edit distance or Jaccard distance. MapReduce
was also used by security applications, such as log analy-
sis [19, 36], spam filtering [9, 10] and malware and botnet
detection [17, 28, 42] for scalability. The security solutions
proposed by Bilge et al. [3], Yang et al. [36] and Yen et
al. [37] analyzed network traffic or logs with MapReduce,
searching for malware signatures or behavior patterns. Our
MapReduce-based data leak detection problem is new, which
none of the existing MapReduce solutions addresses. In ad-
dition, our detection goal differs from the aforementioned
solutions.

Several techniques have been proposed to improve the
privacy protection of MapReduce framework. Such solu-
tions typically assume that the cloud provider is trustwor-
thy. For example, Pappas et al. [27] proposed a data-flow
tracking method in cloud applications. It audits the use of
the sensitive data sent to cloud. Roy et al. [31] integrates
mandatory access control with differential privacy in order
to manage the use of sensitive data in MapReduce compu-
tations. Yoon and Squicciarini [38] detected malicious or
cheating MapReduce nodes by correlating different nodes’
system and Hadoop logs. Squicciarini et al. [34] presented
techniques that prevent information leakeage from the in-
dexes of data in the cloud. In comparison, Our work has
a different security model. We assume that MapReduce
algorithms are developed by trustworthy entities, yet the
MapReduce provider may attempt to gain knowledge of the
sensitive information.

There exist MapReduce algorithms for computing the set
intersection [4, 35]. They differ from our collection intersec-
tion algorithms, as explained in Section 2. Our collection
intersection algorithm requires new intermediate data fields
and processing for counting and recording duplicates in the
intersection. Several techniques were developed for monitor-
ing or improving MapReduce performance, e.g., to identify
nodes with slow tasks [11], GPU acceleration [16] and effi-
cient data transfer [21]. These advanced techniques can be
applied to further speed up our prototype.

7. CONCLUSIONS AND FUTURE WORK
Our work is motivated by the increasing number of acci-

dental data leak issues in organizational personal environ-
ments. We presented a MapReduce system for detecting
the occurrences of sensitive data patterns in massive-scale
content in data storage or network transmission. Our sys-
tem provides privacy enhancement to minimize the exposure
of sensitive data during the outsourced detection. We de-
ployed and evaluated our prototype with the Hadoop plat-
form on Amazon EC2 and a local cluster, and achieved 225
Mbps analysis throughput. For future work, we plan to ex-
plore the deployment of our detection system to hybrid cloud
environments, which consist of private machines owned by
the data owner and public machines owned by the cloud
provider. The use of hybrid cloud infrastructure will likely
improve the efficiency of our detection system. We also plan
to explore the use of hybrid cloud (e.g., [24, 40]) for the
collection-intersection computation.

8. ACKNOWLEDGEMENTS
The authors acknowledge the open access subvention fund

from Virginia Tech. The authors thank Michael Wolfe for
his support and feedback on the work.

9. REFERENCES
[1] Ranieri Baraglia, Gianmarco De Francisci Morales,

and Claudio Lucchese. Document similarity self-join
with MapReduce. In Data Mining (ICDM), 2010
IEEE 10th International Conference on, pages
731–736. IEEE Computer Society, 2010.

[2] Elisa Bertino and Gabriel Ghinita. Towards
mechanisms for detection and prevention of data
exfiltration by insiders: Keynote talk paper. In
Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
ASIACCS ’11, pages 10–19, New York, NY, USA,
2011. ACM.

[3] Leyla Bilge, Davide Balzarotti, William Robertson,
Engin Kirda, and Christopher Kruegel. Disclosure:
Detecting botnet command and control servers
through large-scale netflow analysis. In Proceedings of
the 28th Annual Computer Security Applications
Conference, ACSAC ’12, pages 129–138, New York,
NY, USA, 2012. ACM.

[4] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun
Rao, Eugene J. Shekita, and Yuanyuan Tian. A
comparison of join algorithms for log processing in
MapReduce. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 975–986, New York, NY,
USA, 2010. ACM.

[5] Marina Blanton, Mikhail J. Atallah, Keith B. Frikken,
and Qutaibah M. Malluhi. Secure and efficient
outsourcing of sequence comparisons. In Computer
Security - ESORICS 2012 - 17th European Symposium
on Research in Computer Security, Pisa, Italy,
September 10-12, 2012. Proceedings, pages 505–522,
2012.

[6] Kevin Borders and Atul Prakash. Quantifying
information leaks in outbound web traffic. In IEEE
Symposium on Security and Privacy, pages 129–140.
IEEE Computer Society, 2009.

[7] Kevin Borders, Eric Vander Weele, Billy Lau, and
Atul Prakash. Protecting confidential data on personal
computers with storage capsules. In USENIX Security
Symposium, pages 367–382. USENIX Association,
2009.

[8] Andrei Z. Broder. Identifying and filtering
near-duplicate documents. In Combinatorial Pattern
Matching, 11th Annual Symposium, volume 1848 of
Lecture Notes in Computer Science, pages 1–10.
Springer, 2000.

[9] Godwin Caruana, Maozhen Li, and Hao Qi.
SpamCloud: A MapReduce based anti-spam
architecture. In Seventh International Conference on
Fuzzy Systems and Knowledge Discovery, pages
3003–3006. IEEE, 2010.

[10] Godwin Caruana, Maozhen Li, and Man Qi. A
MapReduce based parallel SVM for large scale spam
filtering. In Eighth International Conference on Fuzzy

Systems and Knowledge Discovery, pages 2659–2662.
IEEE, 2011.

[11] Qi Chen, Cheng Liu, and Zhen Xiao. Improving
MapReduce performance using smart speculative
execution strategy. Computers, IEEE Transactions on,
63(4):954–967, April 2014.

[12] Jason Croft and Matthew Caesar. Towards practical
avoidance of information leakage in enterprise
networks. In 6th USENIX Workshop on Hot Topics in
Security, HotSec’11. USENIX Association, 2011.

[13] Data Loss DB. http://datalossdb.org/statistics.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[15] Tamer Elsayed, Jimmy J. Lin, and Douglas W. Oard.
Pairwise document similarity in large collections with
MapReduce. In ACL (Short Papers), pages 265–268.
The Association for Computer Linguistics, 2008.

[16] Wenbin Fang, Bingsheng He, Qiong Luo, and Naga K.
Govindaraju. Mars: Accelerating MapReduce with
graphics processors. IEEE Trans. Parallel Distrib.
Syst., 22(4):608–620, 2011.

[17] Jérôme François, Shaonan Wang, Walter Bronzi, Radu
State, and Thomas Engel. BotCloud: Detecting
botnets using MapReduce. In IEEE International
Workshop on Information Forensics and Security,
pages 1–6. IEEE, 2011.

[18] Michael J. Freedman, Kobbi Nissim, and Benny
Pinkas. Efficient private matching and set intersection.
In Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and
Applications of Cryptographic Techniques, volume
3027 of Lecture Notes in Computer Science, pages
1–19. Springer, 2004.

[19] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen
Jia, and Gang Lu. LogMaster: Mining event
correlations in logs of large-scale cluster systems. In
IEEE 31st Symposium on Reliable Distributed
Systems, pages 71–80. IEEE, 2012.

[20] Youngseok Lee, Wonchul Kang, and Hyeongu Son. An
Internet traffic analysis method with MapReduce. In
Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, pages
357–361, April 2010.

[21] Dionysios Logothetis, Chris Trezzo, Kevin C. Webb,
and Kenneth Yocum. In-situ MapReduce for log
processing. In USENIX Annual Technical Conference.
USENIX Association, 2011.

[22] Andréa M. Matsunaga, Mauŕıcio O. Tsugawa, and
José A. B. Fortes. Cloudblast: Combining MapReduce
and virtualization on distributed resources for
bioinformatics applications. In eScience, pages
222–229. IEEE Computer Society, 2008.

[23] Adwait Nadkarni and William Enck. Preventing
accidental data disclosure in modern operating
systems. In ACM Conference on Computer and
Communications Security, pages 1029–1042. ACM,
2013.

[24] Kerim Yasin Oktay, Vaibhav Khadilkar, Bijit Hore,
Murat Kantarcioglu, Sharad Mehrotra, and Bhavani
Thuraisingham. Risk-aware workload distribution in
hybrid clouds. In Proceedings of the 2012 IEEE Fifth

International Conference on Cloud Computing,
CLOUD ’12, pages 229–236, Washington, DC, USA,
2012. IEEE Computer Society.

[25] Biswanath Panda, Joshua S. Herbach, Sugato Basu,
and Roberto J. Bayardo. Planet: Massively parallel
learning of tree ensembles with MapReduce. Proc.
VLDB Endow., 2(2):1426–1437, August 2009.

[26] Panagiotis Papadimitriou and Hector Garcia-Molina.
Data leakage detection. IEEE Trans. Knowl. Data
Eng., 23(1):51–63, 2011.

[27] Vasilis Pappas, VasileiosP. Kemerlis, Angeliki Zavou,
Michalis Polychronakis, and AngelosD. Keromytis.
Cloudfence: Enabling users to audit the use of their
cloud-resident data. In Research in Attacks,
Intrusions, and Defenses, volume 8145 of Lecture
Notes in Computer Science, pages 411–431. Springer
Berlin Heidelberg, 2013.

[28] Niels Provos, Dean McNamee, Panayiotis
Mavrommatis, Ke Wang, and Nagendra Modadugu.
The ghost in the browser: Analysis of web-based
malware. In First Workshop on Hot Topics in
Understanding Botnets. USENIX Association, 2007.

[29] Michael O. Rabin. Fingerprinting by random
polynomials. Technical Report TR-15-81, Harvard
Aliken Computation Laboratory, 1981.

[30] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09,
pages 199–212, New York, NY, USA, 2009. ACM.

[31] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security
and privacy for MapReduce. In Proceedings of the 7th
USENIX Symposium on Networked Systems Design
and Implementation, pages 297–312. USENIX
Association, 2010.

[32] Xiaokui Shu and Danfeng (Daphne) Yao. Data leak
detection as a service. In SecureComm, volume 106 of
Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications
Engineering, pages 222–240. Springer, 2012.

[33] Xiaokui Shu, Jing Zhang, Danfeng (Daphne) Yao, and
Wu-Chun Feng. Rapid screening of transformed data
leaks with efficient algorithms and parallel computing.
In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, CODASPY ’15,
New York, NY, USA, 2015. ACM.

[34] Anna Cinzia Squicciarini, Smitha Sundareswaran, and
Dan Lin. Preventing information leakage from
indexing in the cloud. In IEEE International
Conference on Cloud Computing, CLOUD 2010,
Miami, FL, USA, 5-10 July, 2010, pages 188–195.
IEEE, 2010.

[35] Rares Vernica, Michael J. Carey, and Chen Li.
Efficient parallel set-similarity joins using MapReduce.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’10, pages 495–506, New York, NY, USA,
2010. ACM.

[36] Shun-Fa Yang, Wei-Yu Chen, and Yao-Tsung Wang.
ICAS: An inter-VM IDS log cloud analysis system. In

Cloud Computing and Intelligence Systems (CCIS),
2011 IEEE International Conference on, pages
285–289, Sept 2011.

[37] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd
Leetham, William Robertson, Ari Juels, and Engin
Kirda. Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks. In
Proceedings of the 29th Annual Computer Security
Applications Conference, ACSAC ’13, pages 199–208,
New York, NY, USA, 2013. ACM.

[38] Eunjung Yoon and A Squicciarini. Toward detecting
compromised mapreduce workers through log analysis.
In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on,
pages 41–50, May 2014.

[39] Peisen Yuan, Chaofeng Sha, Xiaoling Wang, Bin
Yang, Aoying Zhou, and Su Yang. XML structural
similarity search using MapReduce. In Web-Age
Information Management, 11th International
Conference, volume 6184 of Lecture Notes in
Computer Science, pages 169–181. Springer, 2010.

[40] Chunwang Zhang, Ee-Chien Chang, and R.H.C. Yap.
Tagged-mapreduce: A general framework for secure
computing with mixed-sensitivity data on hybrid
clouds. In Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 31–40, May 2014.

[41] Weizhong Zhao, Huifang Ma, and Qing He. Parallel
k-means clustering based on MapReduce. In Cloud
Computing, First International Conference,
CloudCom 2009, volume 5931 of Lecture Notes in
Computer Science, pages 674–679. Springer, 2009.

[42] Li Zhuang, John Dunagan, Daniel R. Simon, Helen J.
Wang, Ivan Osipkov, and J. Doug Tygar.
Characterizing botnets from Email spam records. In
First USENIX Workshop on Large-Scale Exploits and

Emergent Threats, LEET ’08. USENIX Association,
2008.

[43] Mohsen Zohrevandi and Rida A. Bazzi. Auto-FBI: A
user-friendly approach for secure access to sensitive
content on the web. In Proceedings of the 29th Annual
Computer Security Applications Conference, ACSAC
’13, pages 349–358, New York, NY, USA, 2013. ACM.

APPENDIX
A. PERFORMANCE OF A SINGLE HOST

To verify that one host alone cannot perform large-scale
data leak detection, a single host version of the similarity-
based detection algorithm was implemented and tested on
one machine containing two quad-core 2.8 GHz Xeon pro-
cessors and 8 gigabytes of RAM.

We tested the performance with different size of content
and sensitive data and monitored the system. The perfor-
mance is shown in Table 3.

This single machine-based detection system crashes with
large content or sensitive data because of lacking sufficient
memory. Thus, when the content or sensitive data are large,
a single host is not capable of completing the detection
due to memory limitation and thrashing. This experiment
confirms the importance of our parallel data leak detection
framework with MapReduce.
``````````̀Content

Sensitive
0.9 MB 1.4 MB 1.9 MB

588 MB 22.08 20.81 *
1229 MB 24.21 * *
2355 MB 25.7 * *
4710 MB * * *

Table 3: Detection throughput (Mbps) on a single host with
different content size and sensitive data size. * indicates that
the system crashes before the detection is finished.


