
Probabilistic Program Modeling for High-Precision
Anomaly Classification

Kui Xu Danfeng (Daphne) Yao Barbara G. Ryder Ke Tian
Computer Science Department

Virginia Tech
Blacksburg, VA, 24060

Email: {xmenxk, danfeng, ryder, ketian}@vt.edu

Abstract—The trend constantly being observed in the evolu-
tion of advanced modern exploits is their growing sophistication
in stealthy attacks. Code-reuse attacks such as return-oriented
programming allow intruders to execute mal-intended instruction
sequences on a victim machine without injecting external code.
We introduce a new anomaly-based detection technique that
probabilistically models and learns a program’s control flows
for high-precision behavioral reasoning and monitoring. Our
prototype in Linux is named STILO, which stands for STatically
InitiaLized markOv. Experimental evaluation involves real-world
code-reuse exploits and over 4,000 testcases from server and
utility programs. STILO achieves up to 28-fold of improvement in
detection accuracy over the state-of-the-art HMM-based anomaly
detection. Our findings suggest that the probabilistic modeling of
program dependences provides a significant source of behavior
information for building high-precision models for real-time
system monitoring.

Keywords—Anomaly detection, static program analysis, hidden
Markov model, probability

I. Introduction
New generations of code-reuse based hijacking techniques
allow attackers to compose malicious control flows from victim
program’s code in the memory. For example, return-to-libc and
return-oriented-programming (ROP) exploits reuse and reorder
the existing code (e.g., library calls, machine instructions) in
the victim program’s memory to realize attack sequences. An
attacker can also compose new system call sequences from the
existing set of legitimate calls to perform malicious activities.

The increasing sophistication in modern exploits demands
precise program behavior modeling and runtime classification.
In the paradigm of anomaly detection, one builds models to
capture the expected execution patterns of programs. Program
behaviors that deviate from the model indicate possible in-
trusions. Anomalies may be due to control-flow hijacking,
unexpected inputs, or operational errors.

Program behavior models can be learned from execution
traces. For example, one approach is to collect n-grams of
program call traces (e.g., system calls) to compose a set of
allowable call sequences. This n-gram approach has been used
to analyze system calls [1], [2], [3] and library calls [4]. Any
sequence with new calls or out-of-the-order calls is classified
as an anomaly. However, a widely known limitation of n-gram

This work has been supported by ONR grant N00014-13-1-0016.

is that the approach needs to enumerate and store all possible
call sequences, which hurts its scalability.

There exist several scalable learning techniques for build-
ing program behavior models, for example the automaton
model [5], [6], the hidden Markov model (HMM) [7], [8], [9],
[10], and the execution-graph model [11]. These models rep-
resent the allowable control flow or call transitions, supporting
flow-sensitive detection. Flow sensitivity refers to the model’s
ability to represent and analyze the order of execution of
statements in the program. Because of the underlying support
for modeling and computing conditional probabilities, the
hidden Markov model is more advantageous than the regular
automaton model, capable of providing the maximum likeli-
hood associated with a call sequence occurring. Thus, HMM
supports anomaly detection (i.e., whether a call sequence is
feasible to occur or not), as well as quantification (e.g., how
likely a sequence occurs in the normal program execution).

However, program behavior models constructed solely
through learning from program traces (e.g., [6], [8], [12]) skew
toward the (limited) training data, hurting the detection accu-
racy. For modern complex software, it is extremely challenging
to obtain traces with close-to-full branch, statement, or def-use
coverage. It is typical to have 50-60% coverage for a test-case
generation tool [13], [14]. Incomplete training data results in
excessive false alarms in a learning-based anomaly detection
system, as legitimate call sequences not seen in the training
set may not be recognized.

Unlike learning-based models, program behavioral models
developed through static code analyses on control flows ([15],
[16]) are complete, in that all the statically feasible paths can
be predicted.

Yet, because of the lack of run-time information, stati-
cally constructed behavioral models cannot distinguish path
frequencies. Paths with different occurrence frequencies are
indistinguishable. This lack of quantification in static program
modeling causes important signs of run-time program misuses
or undesirable program-behavior changes to be ignored.

We set two goals for designing our program behavior model
for anomaly-based detection:

• To use probabilistic reasoning to ascertain the likelihoods
of occurrences.

• To cover both static and dynamic control-flow behaviors.

We present a new classification technique for detecting

anomalous program executions and call sequences. The classi-
fication is based on our new probabilistic control-flow model
representing the expected call sequences of the program.
The construction of this probabilistic control-flow model in-
corporates both statically and dynamically extracted control-
flow information, resulting in nearly 30-fold improvement in
anomaly detection accuracy in our experiments.

Our key enabler is the efficient and compact composition of
the static program analysis results into an initialization matrix
for the hidden Markov model. We design a new rigorous prob-
ability representation to model the statically extracted control-
flow graph and call graph information of a program (e.g., call
transition and branching factor). These probabilities are used
to customize our classification model, namely hidden Markov
model. Our experiments show that this static customization
significantly boosts the quality and coverage of the learner. Our
detection system does not require any binary transformation of
the program.

In comparison to the existing probabilistic program-
modeling research (e.g., [17]), our main difference is that our
probabilistic program analysis is driven by the goal of anomaly
detection. Thus, our analysis is coupled with HMM-based
classification. The contributions in this paper are summarized
as follows.

1) We present a technique that can statically infer the
probabilities associated with programs, specifically the
transitions between calls (system or library). We give the
first demonstration that these probability values are useful
for guiding dynamic learning techniques towards more
optimal configurations, significantly improving security
guarantees. With our technique, learning models, such as
HMM, are more resilient to the incompleteness of training
traces.

2) Our prototype – referred to as STILO – is capable of
analyzing and classifying both system call and library call
traces of C/C++ programs in Linux OS. STILO stands for
STatically InitiaLized markOv. We extensively compare
the classification accuracy and performance of STILO
with regular HMM models. Our evaluation is performed
on over 4,000 test cases from eight Linux applications
including a collection of utility programs, server programs
proftpd and nginx.

3) STILO consistently outperforms the regular HMM mod-
els in classification accuracy, achieving 11- to 28-
fold improvement on average. STILO detects all the
code-reuse exploits evaluated, including subtle ROP and
return_to_libc attacks involving legitimate calls.
The detection is successful without triggering any false
positives in normal program traces.
Our experimental findings suggest that reasons for
STILO’s improved accuracy are two-fold: i) an informed
set of initial HMM probability values (including transition
and emission probabilities and probability distribution of
hidden states) and ii) a more optimized number of hidden
states. Both items are crucial – STILO outperforms the
regular HMMs with the similar number of hidden states.
This finding suggests the effectiveness of our program-
analysis-guided probability initialization in boosting the
program anomaly detection.

Our work gives a new method for constructing program
behavior models for anomaly detection that significantly en-
hances the detection capabilities of learning-based methods.
This new modeling technique provides more effective tools for
cyber defenders in battling against modern stealthy exploits.

II. Overview of Our Approach
The attack model in this work is focused on invalid and
abnormal control flow of a program, e.g., executing injected
code through unsanitized arguments or buffer overflow vulner-
abilities, bypassing security checks, exploiting race conditions.
These threats may be introduced through human errors (e.g.,
unauthorized use or operation of the program), software flaws
(e.g., buffer overflow vulnerabilities), attacks by remote attack-
ers or malicious insiders (e.g., through drive-by downloads,
infecting the system with malicious attachments).

In this section, we first illustrate the new technical chal-
lenges associated with probabilistic modeling of program call
sequences and point out the deficiencies in existing and alter-
native approaches. Then, we give an overview of our design.

A. Challenges in Probabilistic Program Behavior
Modeling

Let a function or program have three execution paths (P1, P2,
P3), where paths P1 and P3 are likely to occur during the
program execution. Although statically feasible, P2 has a very
low probability to be executed.

For a learning-based approach, program behavior models
are constructed based on system traces that are collected when
the trustworthy version of the program executes.

• (Pro) Can approximate the frequencies of program behav-
ioral patterns (e.g. using HMM as done in [8]).

• (Con) Incomplete training set results in false alarms. As
shown in Figure 1, system call sequences containing rare
but statically feasible path P2 may be misclassified as
abnormal.

For a program-analysis based approach, feasible control
flow information is extracted through statically analyzing the
code.

• (Pro) Can discover all statically feasible execution paths.
• (Con) Cannot differentiate the likelihoods of occurrences

among feasible paths. As shown in Figure 1, a highly
unlikely call sequence P2P2P2 (an indicator of possible
exploits) cannot be detected.

Straightforward attempts to unify the learning and static
models are also problematic. Consider a straightforward hybrid
approach for building a program behavior model, where one
may use two independent models – a program analysis model
(e.g., [15]) and a quantitative learning model (e.g., [1]) – to
classify. This approach utilizing existing techniques is easy to
implement. However, how to intelligently reconcile the two
votes from the two methods is unclear. If not done properly, a
straightforward hybrid approach may suffer from the inherent
limitations of both paradigms.

Learning	
 Approach	
 Program-­‐Analysis	
 Approach	

Training	
 traces:	
 P1,	
 P3,	
 P3,	
 P1,	
 P1,	
 P3	

	

(Incomplete	
 training	
 data,	
 not	

covering	
 rare	
 path	
 P2)	

Test	
 traces	
 Classifica9on	
 result	

P1P3P3	
 Seen	
 before	

P1P2P3	
 P2	
 is	
 new	

P2P2P2	
 P2	
 is	
 new	

P1	
 Possible	

P2	
 Possible	

P3	
 Possible	

Model:	

Test	
 traces	
 Classifica9on	
 result	

P1P3P3	
 All	
 sta=cally	

feasible	
 on	

program	
 model	

P1P2P3	

P2P2P2	

Common	
 paths:	
 P1,	
 P3	

Rare	
 path:	
 	
 P2	

Cannot	
 differen9ate	
 occurrence	

frequencies	
 (common	
 vs.	
 rare)	

Cannot	
 recognize	
 new	
 feasible	

paths	
 not	
 covered	
 in	
 training	

Fig. 1. Illustrations of classification deficiencies in program behavior models
that are constructed from static program analysis (left) or program traces
(right). Suppose there exist three statically feasible execution paths P1, P2,
and P3, among which paths P1 and P3 are much more frequent to occur than
the rare path P2. The paths represent the system call sequences.

Our method eliminates these deficiencies through a new
program-analysis based probability forecast. i) With a proba-
bilistic representation for call sequences, it differentiates their
frequencies of occurrences, improving detection sensitivity. It
computes a probability P (〈c1, . . . , ck〉|λ) for an observed call
sequence 〈c1, . . . , ck〉 for a given hidden Markov model λ. A
larger probability indicates more likely for the call sequence
to occur in normal program execution. It can identify feasible-
but-unlikely sequences. ii) The new model has the potential to
recognize legitimate new calls, as well as new call sequences
that do not appear in the training set.

B. Key Steps of Our Algorithm

Our program-analysis-guided probabilistic detection has the
capability to reason about the occurrence likelihoods beyond
the binary feasibility prediction, useful for detecting and de-
terring stealthy attacks. A diagram illustrating our workflow
is shown in Figure 2. We give an overview of our workflow
below. Each step is described in details in the following
sections.

1) Probability Forecast: We extract information from
control-flow graphs to statically estimate likelihoods of
occurrence for call sequences through two steps. The
control-flow graph (CFG) of a function is a directed
graph, where nodes represent code blocks of consecutive
instructions identified by static program analysis, and
directed edges between the nodes represent execution
control flow, such as conditional branches, and calls
and returns. Calls include system calls, library calls or
user-defined function calls. (Section III describes our
probability forecast operation in details.)
• Step 1: We take a control-flow graph of a function

and outputs a call-transition matrix for this function
(Definition 4). This matrix consists of estimated call
transition probabilities, which represent the likelihoods
of occurrence for sequences of calls when the function
f() is executed. Computing call-transition matrix is
described in Section III-C.

• Step 2: To obtain the call transitions of the entire
program, we aggregate individual transition matrices
of functions into one (larger) matrix. The aggregation
of probability values are performed according to the
call relations between the caller and callee functions in
the call graph. Aggregating call transitions is described
in Section III-D.

2) Initialization: This operation takes as an input the call-
transition matrix of the program and initializes the pa-
rameters of a machine learning model, namely hidden
Markov model. The values include the number of hidden
states N , the collection of observation symbols and its
number M , emission probability distribution matrix B
representing likelihoods of emitting observation symbols
by hidden states, transition probability A among hidden
states, and the initial probability distribution π for hidden
states. Section IV describes this operation in details.

3) Train and Classify: Training with normal program traces
tunes the parameters of the HMM learner, so that it
can recognize dynamic code behaviors. At classification,
when given a segment of program traces (in system call
or library call), the model computes the probability of the
call segment. This probability is the summation over all
possible hidden state sequences (using the forward algo-
rithm). The classification decision is made with respect to
a pre-defined threshold T on the production probability
of a call sequence.

Our model is flow-sensitive, as the Markov model captures
the order of execution of statements in the program. Flow
sensitivity is important for building high-precision anomaly
detection systems.

Advanced mimicry attacks or attack sequences that are
extremely short are challenging to detect. A hand-crafted
mimicry attack was introduced in [18], where the system calls
in a malicious action are in an order that is compatible with
the detection model. Although our model is not specifically
designed to detect general mimicry attacks (which is an open
problem), it can catch mimicries that involve the invocation
of legitimate-yet-rare calls or paths having low likelihoods
of occurrences. The likelihood of occurrence computation in
our detection significantly increases the difficulty required for
attackers to develop mimicry attack sequences. The advantage
of static analysis is to provide a complete and quantitative
initial representation of program behaviors, which is further
trained with dynamic execution information to probabilistically
characterize the control flow behaviors of a program.

Our probability analysis – covering the entire control-flow
graphs and call graph of a program – is more comprehensive
and rigorous than the ones described in [19], [20]. The latter
are limited to pair-wise conditional probabilities on a control
flow graph.

III. Probability Forecast of Call Se-
quences
In this section, we give formal probability definitions needed
for analyzing control-flow graphs, and present algorithms for
realizing control-flow probability forecast, specifically comput-
ing reachability probabilities and transition probabilities.

Program

CFG
Construction

Probability
Estimation

Information
Extraction

Aggregation
HMM

Initialization

Individual Call
Transition

Aggregated
Call Transition

Hidden

States

C1
C2

C3

C4
C5

Hidden

States

C1

C2
C3

C4

C5

Training

Observed Runtime Program Behaviors

Initial HMM Trained
HMMCFG

CFG with Probability

Normal

Abnormal

Static Analysis Based Model Initialization (New Contributions)

Classification

Fig. 2. A diagram illustrates our anomaly detection workflow.

Our static analysis’ goal is to extract call transition proper-
ties to include in the program behavior model. Such a model is
capable of recognizing new legitimate call sequences not seen
during training, thus significantly improving the accuracy of
detection.

A. Our Definitions

We give new probability definitions in the context of program
execution. The definitions include the conditional probability
of adjacent CFG nodes, the reachability probability from the
function entry, and transition probability for a call pair. With
these definitions, one can quantify control-flow properties in a
rigorous representation that is compatible with Markov-chain
based learning model.

Definition 1: The conditional probability P cij of adjacent
CFG nodes for a node pair (ni, nj) or (ni → nj) is the
probability of occurrence for node nj , conditioning on that
its immediate preceding node ni has just been executed, i.e.,
P [nj |ni].

Definition 2: The reachability probability P ri for a CFG
node ni is the likelihood of the function’s control flow reaches
node ni, i.e., the likelihood of ni being executed within this
function.

pp

1.01.0

Ɛ

Ɛ’

execve() Write()

1

2

3
4

5

6

p 1-p

pp

pqpq 1-p1-p

1.01.0

q 1-q

1.0

1.0

1.0

Control-flow graph
of function f()

Fig. 3. Examples of conditional probabilities and reachability probabilities
for function f(). Conditional probability of a node pair is shown on the edge.
Reachability probability of a node is shown in the node. ε and ε′ represent
the external call site and return site of f().

Examples of conditional and reachability probabilities of a
simplified control-flow graph are given in Figure 3.

Definition 3: The transition probability P
tf
ij of call pair

(ci, cj) in function f() is defined as the likelihood of occur-
rence of the call pair during the execution of the function.

To compute these values, our method first traverses the
control-flow graph of a function to statically approximate the
conditional probability P cij for each pair of adjacent nodes
(n1 → n2). Then, based on conditional probabilities, our
algorithm computes the reachability probability P ri for each
node ni, which represents the likelihood of ni being executed
in the function. Finally, with these reachability probabilities,
we compute transition probabilities for call pairs. Details are
given in the next few sections.

We define the call-transition matrix of a function in Def-
inition 4. The call-transition probability is defined for a call
pair (c1, c2), where c1 precedes c2.

Definition 4: Call-transition matrix of a function stores
pair-wise call-transition probabilities of the function. The rows
and columns of the matrix correspond to calls that appear in the
control-flow graph of the function, respectively. A cell (ci, cj)
stores the likelihood of occurrence for call pair (ci → cj), i.e.,
transition probability P tij .

Table I shows an example of the call-transition matrix of
the function in Figure 3.

TABLE I. A CALL-TRANSITION MATRIX OF THE FUNCTION IN
FIGURE 3. ε REPRESENTS THE EXTERNAL CALLER OF THIS FUNCTION. ε′

REPRESENTS THE EXTERNAL RETURN SITE.

ε′ write execve
ε p(1− q) 1− p pq

write 1− p 0 0
execve pq 0 0

B. Computing Reachability Probability
Our computation traverses a CFG and estimates the probability
to reach a CFG node from the function entry, conditioning
on the function being executed with probability 1.0. The
probabilities are normalized at the aggregation operation later.

The calculation of reachability probabilities is top down
starting from the function entry of CFG. To compute the
probability of a child node, one needs the reachability values
of its parents. We perform the topological sorting on all
nodes and our reachability-probability computation follows the
topological order.

Formally, for node nk the reachability probability P rk is
computed as in Equation 1, where P ri is the reachability

probability of one of nk’s parents and P cik is the conditional
probability for node pair (ni, nk).

P rk =
∑

∀ ni ∈ parent set of nk

P ri ∗ P cik (1)

Specifically, P cij for node pair (ni, nj) is based on
the branching factor at the parent node ni in the control-
flow graph. If node ni has only one child node nj , then
P [nj |ni] = 1. If ni has two or more child nodes, P cij follows
a probability distribution function, e.g., an equal or biased
distribution. Advanced branch prediction and path frequency
approximation techniques can be utilized, such as branch
prediction [21], [22], [23], path frequency [24].

We illustrate the probability values for the control-flow
graph for function f() in Figure 3. P r5 for node 5 is computed
as pq ∗1+p∗ (1− q) = p, where pq and p are the reachability
probabilities of its two parents, and 1 and 1 − q are the
conditional probabilities with respect to the two incoming
edges of node 5.

The complexity for computing reachability probabilities for
a control-flow graph G(V,E) with nodes V and edges E is
O(|V |+ |E|). The number of outgoing edges for each node is
usually small (e.g., 2 or 3). Thus, the complexity is O(|V |) in
practice.

C. Computing Call-Transition Matrix
We compute the likelihoods of occurrence for call pairs in
a function, i.e., transition probability, based on reachability
probabilities.

To compute the transition probability P
tf
ab of a call pair

(ca, cb) in f(), we identify all the nodes {L} such that a node
nl ∈ L has the following three properties. Let nk be a node in
CFG that makes a call ca. i) node nl makes a call (e.g., libcall
or syscall) cb, ii) there exists a directed path (denoted by nk,
nk+1, ... , nl−1, nl) from nk to nl, and iii) no other nodes
on the path between nk and nl make any calls. Then for each
node nl ∈ L, compute the transition probability P tfakbl of call
pair (ca, cb) in f() as Equation (2).

P
tf
akbl

= P rk ∗
∏l−1

i=k
P ci(i+1) (2)

In a context-sensitive model as shown in Equation (2), the
calling context is recorded when computing a call-transition
probability. In other words, two calls made at different call
sites are considered different, even when the calls are the same.
In a context-insensitive model, the identities of the callers are
not recorded. In that case, transition probabilities of all the
occurrences of identical call pairs in the function are added
up as shown in Equation (3). Our STILO prototype is flow-
sensitive and context-insensitive. Thus, the aggregation follows
Equation (3). Enhancing the sensitivity of calling context is our
ongoing work.

P
tf
ab =

∑
∀ node pairs (nk,nl)

s.t. nk calls ca,nl calls cb

P
tf
akbl

(3)

We process CFG nodes following the reverse topological
ordering, which avoids duplicate traversals when searching
for call transitions. Node probabilities are cached, which
avoids recomputing from scratch. As a result, the worst-case
complexity of our algorithm is O(|E|).

The call-transition matrix of a function or a program needs
to satisfy the following laws of probability:

Definition 5: Properties of call-transition matrix of a func-
tion:

1) The sum of the first row of a call-transition matrix of
function f() must sum to 1, i.e.,

∑
i P

tf
εi = 1. Similarly,

the sum of the first column of a call-transition matrix
of function f() must sum to 1, i.e.,

∑
j P

tf
jε′ = 1. This

property is because f() is called with a probability of 1.
2) For each call ci in a call-transition matrix of function f(),

the sum of its incoming probabilities must equal the sum
of its outgoing probabilities, i.e.,

∑
j P

tf
ji =

∑
k P

tf
ik .

A program may contain multiple functions. Thus, obtain-
ing the call-transition matrix corresponding to the program
requires the aggregation of transition probabilities in individual
CFG call-transition matrices (described in the next section).

D. Aggregation of Call Transitions

The final step in our probability forecast is to aggregate multi-
ple call-transition matrices, each corresponding to a function,
into one (larger) complete call-transition matrix representing
the entire program. (This complete matrix is used to initial-
ize the Markov-based learning model.) Aggregation operation
takes as inputs i) the call graph of the program and ii) call-
transition matrix for each function. The call graph is needed
for the calling relations among functions.

1) Tasks and Complexity: Statically constructed flow-
sensitive automata may have formidable complexity, if one
needs to capture all the statically feasible paths in a program.
The total number of states in the automata grows quickly with
the size of its corresponding program, and the possible exe-
cution paths are exponential. E.g., O(mk) number of different
nodes and paths are available for a program’s automata with
average execution path of length k and average out-degree of
m for each node. 1

Our matrix on call transition properties is extremely com-
pact. For space complexity, the dimension (row or column)
of our aggregated matrix is the number of distinct calls. The
matrix records pair-wise call transitions, as opposed to the
entire call sequences. All occurrences of the same call pair
are aggregated to one matrix cell value. The space complexity
is O(n2), where n is the number of distinct calls from the
static analysis of a program. Our aggregation operation has
two tasks:

1. To extend and connect the individual control flows: This
task is realized by inlining the call-transition matrices of
callee functions into those of caller functions, and augmenting

1To reduce the space overhead, the IAM model [15] performs heuristic
automata compaction techniques such as merging similar states and reducing
irrelevant states.

the rows and columns of the call-transition matrix. The call
relations are obtained from the call graph of the program.

2. To update transition probabilities: This task involves two
types of computation: multiplication to adjust the reachability,
and addition to aggregate probabilities of identical call pairs
across the program.

The aggregated call-transition matrix should also satisfy
the rules of probability in Definition 5.

2) Aggregation Algorithm: We distinguish three cases of
call pairs during the probability aggregation, as illustrated in
Figure 4. Suppose that function f() is called within function
g(). i) Call pairs (cgi , f()) and (f(), cgj), where cgi and cgj are
calls in function g() that immediately precede and immediately
follow the call to f(), respectively. ii) (ε, f()), i.e., there is no
call made in g() that immediately precedes the call to f(). iii)
(f(), ε′), i.e., there is no call made in g() that immediately
follows the call to f().

This matrix output by AGGREGATION quantitatively rep-
resents the pair-wise control flow of the program obtained
through the static program analysis. The worst-case complexity
of AGGREGATE is linear in the total number of adjacent call
pairs in the program and the number of edges in the call graph
of the program. For the space complexity, the dimension (row
or column) of the compact aggregated matrix is the number of
distinct calls. The matrix records pair-wise call transitions, as
opposed to the entire call sequences. It is much more efficient
than inlining control flow graphs [15], because all occurrences
of the same call pair are added together to one matrix cell.

Order of aggregation Given the individual call-transition
matrices of functions in the program, the order of aggregation
follows a reverse topological ordering in the call graph. First,
one obtains the topological order (f1(), f2(), . . . , fn()) of all
internal functions of a program based on their call relations
specified in the call graph; then performs AGGREGATE opera-
tion by aggregating fi()’s matrix into fi−1() for i = n, . . . , 2.
Pseudocode for aggregating call-transition matrices is in Algo-
rithm 1. We prove that the matrix produced by our algorithm
satisfies the probability rules in Definition 5 in the appendix.

𝐶𝑓1
 𝐶𝑓2

 𝐶𝑓(𝑛−1)
 𝐶𝑓𝑛

 𝐶𝑔𝑗
 𝐶𝑔𝑖

𝐶𝑎𝑙𝑙𝑠 𝑖𝑛 𝑓():

𝐶𝑎𝑙𝑙𝑠 𝑖𝑛 𝑔():

… … … … … …
𝑃𝑔𝑖,𝑓

𝑡𝑔
 𝑃

𝑓1,𝑓2

𝑡𝑓 𝑃𝑓(𝑛−1),𝑓𝑛

𝑡𝑓 𝑃𝑓,𝑔𝑗

𝑡𝑔

𝜖 𝜖 ′
𝑃𝜖,𝑓1

𝑡𝑓 𝑃
𝑓𝑛,𝜖′

𝑡𝑓

Fig. 4. Illustration of call sequences in a caller function g() and a callee
function f(). Indices are from topological sort. The AGGREGATION operation
replaces and expands entries with f() in g()’s call-transition matrix with calls
in f().

E. Detailed Explanation of Aggregation Algo-
rithm

For each call cfk appearing in the first row of f()’s call-
transition matrix (i.e., pairs (∗, f()) with f() being the child
node), there are two cases. i) If pair (cgi , cfk) does not exist
in g()’s transition matrix, then add a column for cfk in g()’s
call-transition matrix, and let the new transition probability
(cgi , cfk) be P

tg
gi,fk

= P
tg
gi,f
∗ P tfε,fk , where P

tf
ε,fk

is the

Algorithm 1 Function for aggregating callee function’s tran-
sition matrix P into caller function.
Input: Caller function g and callee function f ’s call-transition matrices g.P and f.P .
Output: The aggregated call-transition matrix g.P .

function AGGREGATE(g.P , f.P)
//handling g’s call to f

for all ck ∈ f.P.callset ∧ f.P [ε][ck] 6= 0 do //g calls into f
if ck 6∈ g.P.callset then

for all ci ∈ g.P.callset ∧ g.P [ci][f] 6= 0 do
g.P [ci][ck] = g.P [ci][f] ∗ f.P [ε][ck]

end for
else

for all ci ∈ g.P.callset ∧ g.P [ci][f] 6= 0 do
g.P [ci][ck] += g.P [ci][f] ∗ f.P [ε][ck]

end for
end if

end for
//handling f ’s return to g

for all cl ∈ f.P.callset ∧ f.P [cl][ε
′] 6= 0 do

if cl 6∈ g.P.callset then
for all cj ∈ g.P.callset ∧ g.P [f][cj] 6= 0 do
g.P [cl][cj] = g.P [f][cj] ∗ f.P [cl][ε

′]
end for

else
for all cj ∈ g.P.callset ∧ g.P [f][cj] 6= 0 do
g.P [cl][cj] += g.P [f][cj] ∗ f.P [cl][ε

′]
end for

end if
end for
//handling call transitions inside f

for all (ck, cl) ∈ f.P.callset ∧ f.P [ck][cl] 6= 0 do
if ck 6∈ g.P.callset ∨ cl 6∈ g.P.callset then
g.P [ck][cl] =

∑
i g.P [ci][f] ∗ f.P [ck][cl]

else
g.P [ck][cl] +=

∑
i g.P [ci][f] ∗ f.P [ck][cl]

end if
end for
//when f does not make calls

for all (ci, cj) ∈ g.P.callset do
g.P [ci][cj] += g.P [ci][f] ∗ f.P [ε][ε′] ∗ g.P [f][cj]

end for
//remove f from g’s matrix
g.P.callset = g.P.callset+ f.P.callset− {f}
return g.P

end function

transition probability in f() associated with call pair (ε, cfk).
ii) Otherwise, compute the new transition probability of call
pair (cgi , cfk) as P tggi,fk+P

tg
gi,f
∗P tfε,fk , where P tggi,fk is transition

probability in g() for pair (cgi , cfk) before aggregation.

For each call cfl appearing in the first column of f()’s
call-transition matrix (i.e., call pairs (f(), ∗) with f() being
the parent node), we distinguish two cases. i) If pair (cfl , cgj)
does not exist in g()’s transition matrix, then add a row for
cfl in g()’s call-transition matrix and let the new transition
probability of pair (cfl , cgj) be P tgf,gj ∗ P

tf
fl,ε′

, where P tffl,ε′ is
the transition probability in f() associated with pair (cfl , ε

′).
ii) Otherwise, update the transition probability in g() for
pair (cfl , cgj) as P tgfl,gj + P

tg
f,gj
∗ P tffl,ε′ , where P

tg
fl,gj

is the
probability in g()’s matrix before aggregation.

Each of the other call pairs (cfk , cfl) in f() with transition
probability P

tf
fk,fl

is aggregated into g()’s transition matrix:
i) If the call pair (cfk , cfl) does not exist in g()’s transition
matrix, add columns and rows for cfk and cfl and compute the
new transition probability of (cfk , cfl) as P tgfk,fl = (

∑
i P

tg
gi,f

)∗
P
tf
fk,fl

. ii) Otherwise, compute the new transition probability
for (cfk , cfl) as P tgfk,fl + (

∑
i P

tg
gi,f

) ∗ P tffk,fl , where P tgfk,fl is
the probability in g()’s matrix before the aggregation.

If function f() does not make any calls, then compute the
new transition probability for pair (cgi , cgj) in g() after the
aggregation as: P tggi,gj + P

tg
gi,f
∗ P tfε,ε′ ∗ P

tg
f,gj

, where P tggi,gj is
the transition probability in g() for pair (cgi , cgj) before the
aggregation. Remove the row and column in the call-transition
matrix of g() that corresponds to f(). The two properties
(Definition 5) of call-transition matrix are preserved during
aggregation, which we show in the appendix.

Summary Our probability forecast takes as inputs control
flows that are statically inferred, and transforms them into
a rigorous probability representation. This static representa-
tion quantitatively characterizes the behaviors of a program
and is in a format that can be naturally integrated into the
corresponding HMM-based detection model. Loop analysis
is not included, as we traverse each node once. Program
behaviors that are not covered by our static program analysis
(e.g., function pointer, recursions and loops) are learned from
program traces by our STILO HMM model. We describe how
STILO HMM utilizes the obtained probability values next.

IV. HMM Initialization
A limitation in existing HMM-based anomaly detection models
(e.g., [8], [9]) is its reliance on training traces. The program
behavioral model is constructed solely based on traces. The
model’s initial probabilities are chosen randomly – hoping
they are corrected during training. As we demonstrate through
experiments, the model’s accuracy suffers from this simple
initialization.

Our technique eliminates this deficiency. Our hidden
Markov model encompasses both static and dynamic pre-
diction of the program’s behaviors. It is strategically initial-
ized with the call-transition probabilities and call information
obtained from the static program analysis. This approach
significantly enhances the model’s ability to discern execution
anomalies, validating our hypothesis.

Hidden state We give semantic meanings to the initial hidden
states. We let them represent the logical reasons (or program
phases) governing the actions of a program. In our prototype,
we associate each hidden state with a distinct system call or
library call in the aggregated call-transition matrix. Therefore,
there is a one-to-one correlation between hidden states and
calls in the program. In our STILO prototype, the number N
of hidden states is the total number of distinct calls in the
program code. This design choice enables us to conveniently
incorporate statically obtained information into HMM. In
regular HMMs (e.g., [8], [9]), N is the approximated number
of distinct calls in program traces (which is usually smaller 2).

Observation symbol The observation symbols M need to be
associated with observable program behaviors. We define the
observation symbols as system calls or library calls.

Emission probability Because of the semantics of our hidden
states, it is straightforward to initialize the emission proba-
bilities. For each hidden state i, we assign a high emission
probability (e.g., 0.5) for the call that i corresponds to, and

2Our experiments show a larger N does not guarantee the improvement in
classification.

assign random low probabilities to the rest of the observation
symbols.

State-transition probability Our HMM’s state-transition
probabilities {A} are initialized with the transition probabil-
ities {P tij} of call pairs in the program’s aggregated call-
transition matrix.

Initial probability distribution In STILO, because of our one-
to-one correlation between hidden states and calls, the distribu-
tion π of hidden states is approximated based on the program’s
call-transition matrix. Specifically, πi is initialized with the
frequencies of call occurrences (

∑
j P

t
ij) and normalized.

Impact of threshold selection on security. The choice of
probability threshold T used to discern abnormal from normal
segments has direct impact on security. Only segments having
production probabilities greater than threshold T are classified
as normal. In our experiments, we show how threshold values
impact false-positive and false-negative rates. For example,
smaller thresholds likely produce fewer false positives (i.e.,
false alarms), but may generate more false negatives (i.e.,
missed detection). In contrast, larger thresholds have the op-
posite impact on security, i.e., more false positives and fewer
false negatives. Attackers may be able to evade the detection, if
they can find exploit sequences whose probabilities are above
the threshold, assuming that all the detection algorithms and
parameters are public. This property is unavoidable, because
of the intrinsic arms-race nature of security detection.

V. Experimental Evaluation
We name our prototype STILO, short for STatically InitiaLized
markOv. STILO is implemented in C/C++ using the Dyninst
library [25]. Our experiments aim to answer the following
questions.

1) How much improvement in classification accuracy does
STILO HMM provide compared to the regular HMM?
(In Section V-B)

2) What are the reasons for STILO HMM’s improvement?
(In Section V-C)

3) Can STILO detect real-world attack traces, in particular
the advanced attacks that introduce subtle control-flow
anomalies? (In Section V-D)

4) Which type of traces gives more accurate classification,
library calls or system calls, and why? (In Section V-B)

A. Experimental Setup

The programs and test cases used in our experiments include
utility applications (flex, grep, gzip, sed, bash, vim)
from the Software-artifact Infrastructure Repository (SIR) [13],
as well as a FTP server proftpd and an HTTP server
nginx. 3 For proftpd and nginx, we collected traces by
manually interacting with the servers with a wide variety of
file-transfer related tasks and web browsing tasks, respectively.
The programs we tested include both utility applications and
server programs, which are all potential victims of attacks

3These programs average over 52, 586 lines of code, and 1, 139 KB in size.

such as memory corruption, back-door, or binary instrumenta-
tion/replacement by attackers.

We compare the classification performance of STILO
with the widely accepted HMM-based classification, which
is the state-of-the-art probabilistic anomaly detection model
(e.g., [8], [9]). We refer to that model as the regular HMM
model.

The good coverage of test cases in SIR 4 gives the regular
HMM a fair chance in the comparison with our model, as the
accuracy of a regular HMM relies heavily on completeness
of training data. For the regular HMM, the set of observation
symbols consists of distinct calls from execution traces. The
number of hidden states is the size of the call set (i.e., the
total number of distinct calls in the traces). The regular model
randomly chooses the initial HMM parameters.

For proftpd, we test it by connecting to the running
server from a client, navigating around the server directories,
creating new directories and files, downloading, uploading,
and deleting files and folders. For nginx, our test cases
include both static webpages and dynamic php webpages
which interact with an SQL database we set up. Our test cases
cover different media types including text, images, scripts and
video files with Flash and Mp4 formats. Normal http and
encrypted https accesses are also tested.

All standard HMM procedures are followed for model
training and testing. We perform 10-fold cross validation on
80% the normal traces. At each training iteration, convergence
test is performed on the rest 20% of the normal traces. All
comparable HMM models are subject to the same convergence
criteria during training.

Given a threshold T for a program, false negative (FN) and
false positive (FP) rates in HMM are defined in Equations (4)
and (5), where {SA} and {SN} denote the set of abnormal
segments and the set of normal segments of the program,
respectively, and PSA and PSN represent the probability of
an abnormal segment and a normal segment, respectively.

FN =
|{SA : PSA > T}|

|{SA}|
(4)

FP =
|{SN : PSN ≤ T}|

|{SN}|
(5)

Training and classification are on n-grams of program traces,
where n =15 in our experiments (i.e., all segments consist
of 15 calls). Duplicate segments are removed in our training
datasets in order to avoid bias. Experiments were conducted on
a Linux machine with Intel Core i7-3770 CPU (@3.40GHz)
and 16G memory.

• Normal segments are obtained by running the target
executable and recording the library call or system call
segments as the result of the execution. A total of
130,940,213 such segments from eight programs are
evaluated.

• Abnormal-A segments (or attack segments) are obtained
by reproducing several real-world attack exploits and
payloads. A total of 30,079 such segments are evaluated.
Not all of Abnormal-A segments contain exploits.

4Branch coverage is 67% on average and line coverage is 64% on average.

• Abnormal-S segments (or synthetic abnormal segments)
are generated by replacing the last third of a normal call
segment with randomly ordered calls from the legitimate
call set. The call set consists of the distinct calls in a pro-
gram’s traces. A total of 160,000 Abnormal-S segments
are evaluated. Our use of Abnormal-S segments enables
a rigorous and comprehensive accuracy assessment.

We use the system tools strace and ltrace to in-
tercept system calls and library calls of running application
processes. 5 The HMM training and evaluation code is written
in Java using the Jahmm library [28]. For identifying system
calls, we compile programs with static linking. The library
calls of interest are the glibc library calls. The call space
contains over 200 distinct system calls and over 1,000 distinct
library calls.

B. Classification Accuracy

For each program, we compare STILO and regular HMM’s
abilities to recognize new normal segments that do not ap-
pear in the training set through 10-fold cross validation with
Normal segments. We also compare their abilities to recognize
Abnormal-S segments.

HMM computes the probability of occurrence for each
segment. The classification decision is made with respect to a
probability threshold T . Different choices of T yield different
false positive (FP) and false negative (FN) rates. We show
the results of server programs proftpd and nginx as an
example in Figure 5. Experiments on the other six utility
programs exhibit similar patterns. The details are shown in
Figure 6.

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

(L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

syscall:nginx

Our
Regular

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:nginx

Our
Regular

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

(L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

False positive rate

syscall:proftpd

Our
Regular

0

 0.001

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

libcall:proftpd

Our
Regular

Fig. 5. Comparison of STILO and regular HMM’s false negative rates (in
Y-axis, base-10 log scale) for server programs proftpd and nginx on system
calls and library calls under the same false positive rates (in X-axis).

5For performance consideration, alternative monitoring tools (e.g., au-
ditd [26]) can be used by STILO in production systems. An acceptable 10%
overhead was reported on a hybrid benchmark with realistic workload for
auditd [27]. More performance discussion is in Section V-E.

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

syscall:flex

Our
Regular

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:grep

Our
Regular

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:gzip

Our
Regular

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:sed

Our
Regular

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:bash

Our
Regular

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:vim

Our
Regular

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

libcall:flex

Our
Regular

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:grep

Our
Regular

0

 0.001

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

libcall:gzip

Our
Regular

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:sed

Our
Regular

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:bash

Our
Regular

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:vim

Our
Regular

Fig. 6. Comparisons of classification accuracy in our model and the regular HMM for library and system calls. X-axis shows false positive rates (misclassified
normal segments). Y-axis (logscale, base 10) shows false negative rates (misclassified abnormal segments).

Figure 7 shows the averaged false positive and false neg-
ative rates of STILO and the regular HMM for syscalls and
libcalls. The average is computed across all eight programs
evaluated. The FP rates are in the X-axis. The FN rates in
Y-axis are in base-10 log scale. Standard errors are shown as
the whisker lines.

Our results show that STILO consistently demonstrates
lower false negative rates than the regular model, when com-
pared with respect to the same false positive rate. This trend is
observed for both library calls and system calls. This evidence
shows a significantly improved ability in distinguishing normal
and abnormal segments when using STILO HMM. STILO
HMM provides 11- to 28-fold improvement in classification
accuracy on average compared to the regular HMM.

 0.0001

 0.001

 0.01

 0.1

 1

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

A
v
e
ra

g
e
 F

a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

 (
L
o
g
 B

a
s
e
 1

0
)

False Positive Rate

OUR-SYSCALL
REGULAR-SYSCALL

OUR-LIBCALL
REGULAR-LIBCALL

Fig. 7. Comparison of averaged false negative rates (in Y-axis) across eight
programs evaluated on system calls or library calls by our model and the
regular HMM, with respect to false positive rates (in X-axis). Standard errors
are shown.

We also observe that STILO models have more hidden

states than the regular models for both library and system calls
(on average 0.1 to 3.1 times more).

STILO HMMs take fewer iterations to converge, despite
having more states. This observation indicates that our initial
STILO HMM is closer to its optimum than the regular HMM,
confirming the positive impact of our initialization.

C. Impact of Hidden States On Detection

 0.0001

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a

ls
e

 n
e

g
a

ti
v
e

 r
a

te
(L

o
g

s
c
a

le
 b

a
s
e

 1
0

)

False positive rate

syscall:grep

N: 1.5X
2X

2.5X
3X

3.5X

0

 0.0001

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

syscall:gzip

N: Our Model
grep 2.92X
gzip 2.35X

Fig. 8. The (unpredictable) impact of the number N of hidden states on
classification accuracy. Classification results of system calls by regular HMM
with various numbers of hidden states for grep and gzip programs are shown,
as well as results from STILO HMM. For each HMM, N is shown as multiples
(X) of the number of distinct calls in traces.

We evaluate the regular models with different numbers N
of hidden states, and compare their classification accuracy with
STILO for all programs at both syscall and libcall levels. The

syscall results for grep and gzip are shown in Figure 8. We
observe that:

• For the regular model, having more hidden states may
or may not increase the model accuracy. Models with
fewer hidden states sometimes outperform those with
more states.

• STILO consistently demonstrates higher classification
accuracy, even when compared to regular models with
more hidden states. This observation suggests our initial
probability values also contribute to the improvement in
classification performance.

TABLE II. STILO SUCCESSFULLY DETECTS Abnormal-A SEGMENTS
FROM REAL-WORLD EXPLOITS. IT RECOGNIZES ATTACK SEQUENCES

WITHOUT TRIGGERING ANY FALSE ALERTS ON Normal SEGMENTS.

Vulnerability Payload
Buffer Overflow ROP syscall chain

(gzip) return to libc
return to libc chain

Backdoor bind perl
(proftpd) bind perl ipv6

generic cmd execution
double reverse TCP

reverse perl
reverse perl ssl

reverse ssl double telnet
Buffer Overflow guess memory address

(proftpd)

D. Detection of Code-Reuse Exploits

To demonstrate the ability to detect subtle code-reuse exploits,
we reproduced ROP and return_to_libc exploits. Some
of these exploit and payload segments are entirely composed of
existing legitimate calls in a new ordering. We also evaluated
conventional code injection exploits. Details are shown in
Table II.

STILO successfully detects these exploits without trig-
gering any false alerts in normal segments. It recognizes
anomalous segments regardless of whether there are any new
unseen system calls in them.

ROP-based syscall chains. We produced ROP-based syscall
chains that allow attackers to create and execute a sequence of
system calls using the instruction gadgets from the victim pro-
gram gzip. A buffer overflow vulnerability was instrumented
into gzip. STILO successfully recognizes these system call
chains as abnormal, i.e., these sequences generate zero or
ultra low probabilities (e.g., 2.20 × e−15) on the abnormal
segments that are intercepted during the instruction-reuse ex-
ploit. In comparison, the regular HMM cannot recognize these
segments as abnormal.

We list the classification probabilities by both our and
regular models for such call segments. The false positive rate
is set to 0.0001, and the corresponding thresholds for STILO
and regular models are shown in Table III.

Return to libc. STILO can also detect several libcall-
based code-reuse exploits that target a vulnerable gzip.
return_to_libc’s payload uses system() libc func-
tion to open a shell. return_to_libc_chain’s payload
invokes sequences of libc function calls to implement the
download_and_execute action. Another ROP exploit’s

TABLE III. STILO MODEL GENERATES ZERO OR ULTRA LOW
PROBABILITIES ON ABNORMAL SEGMENTS DURING A SUBTLE

INSTRUCTION-REUSE ROP EXPLOIT. IN COMPARISON, THESE SEGMENTS
ARE NOT RECOGNIZED BY THE REGULAR HMM AS ABNORMAL (FALSE

NEGATIVES).

Segments Prob (STILO) Prob (Regular)
S1 0.0 0.20
S2 2.20 × e−15 0.29
S3 1.54 × e−5 0.25
S4 0.0 0.27
S5 0.0005 0.33
S6 0.0 0.23
S7 0.0004 0.26

payload executes shell commands attempting to steal sensitive
information from the victim host. STILO detects all these
attack call traces.

Backdoor. For proftpd server, we reproduced a back-
door vulnerability (OSVDB-69562) and a buffer overflow
(CVE-2010-4221) exploit. The backdoor vulnerability was
found in a proftpd downloadable archive, allowing attackers
to gain the privilege of remote command execution. In the
buffer overflow exploit, an attacker attempts to guess memory
offsets of instructions under ASLR through telnet connections.
All the payloads used in the backdoor exploit are for es-
tablishing various types of communication channels (telnet,
IPv6, oneway, bidirectional, TCP, or SSL) between the victim
machine and the remote attacker.

Two examples of attack system-call segments evaluated
are:

• [read, read, close, unmap, stat, open, fstat,
mmap, read, read, close, munmap, uname,
socket, connect]

• [open, fstat, mmap, close, ioctl, ioctl,
ioctl, rt_sigaction, execve, execve, execve,
execve, brk, access, mmap]

E. Runtime Performance

Our static analysis for HMM initialization is efficient and
takes seconds to finish. The runtime of STILO’s STATIC CFG
CONSTRUCTION, PROBABILITY ESTIMATION, and AGGRE-
GATION OF CALL TRANSITION MATRIX operations is shown
in Table IV.

The classification of a 15-call segment is fast (e.g., average
0.038 milliseconds for gzip on the system call model). The
classification can also be made parallel with multithreaded
programming for accelerated processing.

Training HMM models is generally time-consuming. For
regular HMM, 10-fold cross-validation procedure may take
several days to complete, e.g. for proftpd. We observe that
STILO HMMs take fewer iterations to reach convergence than
regular HMMs (39% fewer on average), reducing training time.

Intercepting calls with strace and ltrace introduce
significant runtime overhead, which makes them infeasible for
production systems in practice. Replacing them with other
more sophisticated tools (e.g., auditd for system call tracing)
will likely bring substantial reduction in runtime overhead.

TABLE IV. STILO ANALYSIS RUNTIME IN SECONDS. CFG IS FOR
CFG CONSTRUCTIONS. PROB. EST. IS FOR PROBABILITY ESTIMATION IN

FUNCTIONS. AGGR. IS FOR THE AGGREGATION OF CALL-TRANSITION
MATRICES.

Prog. Time (lib)
Time (sys) CFG Prob. Est. Aggr.

flex 0.06 0.24 0.31
0.51 2.67 4.08

grep 0.07 0.39 0.3
0.51 2.76 4.01

gzip 0.04 0.08 0.28
0.49 2.41 3.97

sed 0.08 0.15 0.55
0.54 2.56 4.52

bash 0.46 1.11 9.43
1.06 3.66 19.62

vim 0.65 2.48 218.04
1.21 4.99 175.80

nginx 0.39 0.75 1.24
2.45 8.29 41.06

proftpd 1.01 1.87 14.96
3.01 9.39 55.78

F. Summary of Experimental Findings

Our experimental findings positively confirm our hypothesis
that control-flow information extracted from static program
analysis can significantly improve the classification accuracy
in HMM-based anomaly detection techniques. We summarize
our experimental findings below.

1) The average classification accuracy of our STILO HMM
is 11- to 28-fold higher than the hidden Markov models
used by existing anomaly detection systems. This trend is
consistently observed in all the utility programs and server
programs proftpd and nginx, for both library calls
and system calls as shown (in Figure 7). The high classi-
fication accuracy in STILO suggests the effectiveness of
our static program analysis guided HMM initialization in
boosting its security performance.
STILO HMM takes on average 39% few iterations to
converge than regular HMM. This result shows that our
initialization method facilitates the convergence during
HMM training.

2) STILO outperforms the regular HMMs with similar or
more hidden states, suggesting the significance of our
probability forecast in boosting detection accuracy. A
higher number of hidden states may or may not increase
the classification accuracy, as shown in Figure 8. There-
fore, we attribute STILO’s accuracy improvement to two
reasons: i) an informed set of initial probabilities (tran-
sition and emission probabilities and initial probability
distribution of hidden states) and ii) a more optimized
number of hidden states.

3) STILO detects all the library-call and system-call based
code-reuse attacks evaluated, while maintaining zero false
positive rates for normal call segments. The attacks
include return-to-libc and return-oriented-programming
(ROP). STILO detects subtle code-reuse based anomalous
sequences that are composed of legitimate call elements,
whereas the regular HMM model cannot.

4) Detection with library calls yield more precise results
than that with system calls on average. Classification
accuracy based on libcalls is on average twice as high as
that of syscalls. This trend is generally observed for both
our model and the regular HMM with a few exceptions

(Figure 7). Both types of call sequences reflect the control
flow of program execution. We partially attribute the
higher accuracy of using libcalls to the larger set of
distinct calls as compared to syscalls, which results in a
finer-grained representation of the program control-flow
patterns.

VI. Related Work
Following the taxonomy in [15], control-flow anomaly-
detection solutions can be categorized based on the flow-
sensitive property (i.e., the ability to analyze the order of state-
ment executions) or the orthogonal context-sensitive property
(i.e., the ability to distinguish calling context at runtime). How
models are constructed, through program analysis or learning,
further differentiates them.

Learning-based or hybrid flow-sensitive models.
Automaton-based models [5], [6] and HMM-based models [8],
[9] are flow-sensitive anomaly detection models. With a
sufficient large n, n-gram models (e.g., [2]) are also flow-
sensitive. The execution-graph model in [11] was built through
learning runtime program execution patterns (return addresses
on the call stack associated with system calls) and leveraging
the inductive property in call sequences.

A hybrid pushdown automaton model was presented in [5],
where researchers refined the basic statically generated model
with program traces in order to cover new transitions associ-
ated with runtime properties, such as exception handlers and
dynamic libraries. In comparison, our technique is centered
on probabilistic reasoning of program behaviors, whereas [5]
is not a probabilistic approach, thus their automatons do not
have the capability to record, model or analyze occurrence
frequencies.

Probabilistic data mining techniques were demonstrated for
analyzing network intrusions in [29]. The first probabilistic
learning work for program behavior modeling was presented
by Warrender et al. [8] using a hidden Markov model for clas-
sification system call segments, which we extensively compare
with throughout the paper. Later, researchers proposed to use
an HMM for comparing two parallel executions for anomaly
detection [7].

Program analysis-based flow-sensitive models. Instead of
learning the automaton model from program traces, one can
construct a similar flow-sensitive automaton by statically an-
alyzing the source code. These statically constructed flow-
sensitive models were first demonstrated by Wagner and Dean
(non-deterministic finite automaton (NFA) or callgraph model
in [16]) and later improved by others (e.g., inline automa-
ton model (IAM) in [15]). Dyck model [30] described how
flow-sensitive and context-insensitive NFA can enjoy context
sensitivity (more below).

Techniques improving context sensitivity. Context sensitiv-
ity refers to the ability to recognize different calling context
associated with a call, when collecting program traces (for
training or for monitoring). There is a tradeoff between the
context sensitivity and runtime overhead. For example, as
shown in [16] building a context-sensitive push-down au-
tomaton (PDA) (in their abstract stack model) has prohibitive

runtime costs. As pointed out by [15], context sensitivity does
not imply flow sensitivity, and vice versa.

Using program counter [6] or call stack information (e.g.,
dynamically constructed in VtPath [31] or statically con-
structed and more precise in VPStatic [32]) to distinguish
calling context have been shown efficient in practice. Several
techniques for improving context sensitivity of NFA were
proposed in [33], some of which require program instrumen-
tation such as renaming system calls to distinguish different
invocations of the same functions. Dyck model [30] inserted
code that links the entry and exit of a target function with
its call sites. This instrumentation differentiates call sites,
improving context sensitivity.

Existing papers on context-sensitivity improvement pre-
sented fan-in properties, as opposed to runtime classifica-
tion results. Our current STILO prototype is flow-sensitive,
but context-insensitive. Integrating the above techniques into
STILO to provide varying degrees of context sensitivity is
feasible.

Integrity properties and enforcement. The property of
control-flow integrity (CFI) generally refers to that program
execution must follow a path of a pre-determined CFG (e.g.,
CFGs derived from static binary analysis) [34]. Enforcement
of CFI property can be realized through modifying source and
destination instructions associated with control-flow transfers
and embedding control-flow policies with IDs within the bi-
nary for runtime enforcement [34]. Subsequent CFI techniques
improve on the handling of forward edges (an indirect jump or
call) in the control-flow graph [35] and the detection of kernel
rootkits [36]. Researchers proposed to use static analysis to
reduce CFI’s overhead [37]. Zhang and Sekar presented static
analysis based methods and instrumentation to enforce the CFI
property on commercial off-the-shelf binaries [38]. Total-CFI
is a framework for system-wide runtime control-flow integrity
enforcement built on a software emulator [39]. Special du-
plication techniques on functions and function pointers were
demonstrated for preventing control-flow hijacking [40].

In comparison to these CFI techniques, our monitoring
system is focused on the call-making portion of control flow
instead of all the execution transfer instructions. We do not
require any binary transformation or software emulator. Most
CFI implementations assume limited dynamic code behaviors
(such as self-modifying code, runtime code generation and
loading). This assumption is not necessary in STILO because
of our trace-based learning component. Unlike STILO, CFI
is not designed to offer any probabilistic behavior analysis.
Recent research showed possible gadget formation under CFI
verification [41], confirming the need for complementary run-
time monitoring techniques such as ours.

Write integrity testing (WIT) technique aims to prevent
memory-error exploits [42]. It predicts writable objects through
static point-to analysis. WIT also realizes control-flow integrity
and ensures that runtime indirect control transfers are consis-
tent with control-flow graphs.

Data flow. Our work is focused on system-call specific
control flows. In the literature, data flows together with control
flows were shown useful for anomaly detection [43]. Def-use
data-dependence analysis has been used for modeling malware
behaviors, e.g., [44], [45], [46]. Researchers demonstrated

the effectiveness of modeling arguments of system calls for
anomaly detection, e.g., in terms of the distribution of string
lengths and characters [47].

The data-flow integrity (DFI) property, first proposed by
Castro, Costa, and Harris, refers to the consistency require-
ment between runtime data flow and statically predicted data
flow [48]. The authors demonstrated the detection of both
control and non-control-data attacks by DFI enforcement.

Other probabilistic approaches. Probabilistic programming
is designed for providing automatic inference on user-specified
probabilistic models [49]. Associated techniques were pro-
posed for inferring properties of probabilistic programs [50].
Researchers have also used probabilistic programming lan-
guages to analyze information leakage [51], [52]. Our current
STILO model does not handle probabilistic programs. How
to extend it to protect probabilistic programs is an interesting
open question.

Probabilistic abstract interpretation has been used to com-
pute and limit the knowledge gain associated with information
release [53]. The work by Sankaranarayanan, Chakarov, and
Gulwani statically approximated probabilities of program-path
execution with Monte-Carlo simulation [17]. Sampson et al.
provided a framework for expressing and verifying proba-
bilistic assertions of variables in programs with a Bayesian-
network based model [54]. Recently, probabilistic modeling
was proposed to predict program properties in new, unseen
programs (aka Big Code) [55]. Big Code is not specifically
designed for control-flow security. Thus, it is unclear how it
can be extended for program anomaly detection.

VII. Conclusions, Future Work, and An
Open Problem
We have achieved the program-behavior-modeling goals that
are set for detecting control-flow anomalies: probabilistic mod-
eling, covering both static and dynamic control-flow behaviors.
The probabilistic program modeling at the control-flow level
for anomaly detection is new. It substantially improves the
coverage and granularity of the existing static or dynamic anal-
ysis based anomaly detection systems, enhancing the detection
capability. We provided a rigorous and general framework and
algorithms for performing probability analysis on statically
inferred control flows, and its seamless integration with a prob-
abilistic learning model. Extensive experimental evaluation
confirmed the advantages of STILO HMMs in distinguishing
normal and abnormal traces of various kinds, when compared
with the widely accepted HMM-based anomaly detection
methodology.

For future work, we plan to explore the use of probabilistic
automaton (e.g., [56]) in the detection, specifically construct-
ing program behavioral models with static-program-analysis
enhanced probabilistic automata. We also plan to support
the incremental learning [57] in STILO to achieve adaptive
detection.

An open problem The custom built HMM in the behavioral
distance measurement work by Gao, Reiter, and Song [7]
has pairs of systems call segments as observed symbols (as
opposed to single system call segments). The model measures

the behavioral distance between two program variants (e.g.,
Linux web server and Windows web server). This approach is
generally known as N-variant [58]. Their HMM is initialized
with random probability distributions and a fixed number of
hidden states. Then, the initialized model is trained with benign
traces (in the form of pairs of system call segments). How to
extend STILO-HMM to the N-variant context is an interesting
open problem.

Acknowledgment

The authors would like to thank David Evans and anonymous
reviewers for their insightful comments and suggestions on the
work.

References

[1] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of
self for Unix processes,” in Proceedings of the 1996 IEEE Symposium
on Security and Privacy, ser. SP ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 120–.

[2] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, 1998.

[3] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close look on
N-grams in intrusion detection: Anomaly detection vs. classification,” in
Proceedings of the 2013 ACM Workshop on Artificial Intelligence and
Security, ser. AISec ’13. New York, NY, USA: ACM, 2013, pp. 67–76.
[Online]. Available: http://doi.acm.org/10.1145/2517312.2517316

[4] A. Jones and Y. Lin, “Application intrusion detection using language
library calls,” in Proceedings of the 17th Annual Computer Security
Applications Conference, ser. ACSAC ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 442–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=872016.872148

[5] Z. Liu, S. M. Bridges, and R. B. Vaughn, “Combining static
analysis and dynamic learning to build accurate intrusion detection
models,” in Proceedings of the Third IEEE International Workshop
on Information Assurance, ser. IWIA ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 164–177. [Online]. Available:
http://dx.doi.org/10.1109/IWIA.2005.6

[6] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program behaviors,”
in Proceedings of the 2001 IEEE Symposium on Security and Privacy,
ser. SP ’01. Washington, DC, USA: IEEE Computer Society, 2001.
[Online]. Available: http://dl.acm.org/citation.cfm?id=882495.884433

[7] D. Gao, M. K. Reiter, and D. X. Song, “Beyond output voting: Detecting
compromised replicas using HMM-based behavioral distance,” IEEE
Trans. Dependable Sec. Comput., vol. 6, no. 2, pp. 96–110, 2009.

[8] C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting intrusions
using system calls: Alternative data models,” in IEEE Symposium on
Security and Privacy, 1999, pp. 133–145.

[9] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern Recognition,
vol. 36, no. 1, pp. 229 – 243, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320302000262

[10] Y. Dou, K. Zeng, Y. Yang, and D. Yao, “MadeCR: Correlation-
based malware detection for cognitive radio,” in Proceedings of IEEE
Conference on Computer Communications (INFOCOM), April 2015.

[11] D. Gao, M. K. Reiter, and D. Song, “Gray-box extraction of execution
graphs for anomaly detection,” in Proceedings of the 11th ACM
conference on Computer and communications security, ser. CCS ’04.
New York, NY, USA: ACM, 2004, pp. 318–329. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030126

[12] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy
malware activities with traffic causality and scalable triggering relation
discovery,” in 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06,
2014, S. Moriai, T. Jaeger, and K. Sakurai, Eds. ACM, 2014, pp. 39–
50. [Online]. Available: http://doi.acm.org/10.1145/2590296.2590309

[13] Software-artifact Infrastructure Repository. http://sir.unl.edu/portal/
index.php.

[14] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su, “Synthesizing method sequences for high-coverage testing,” in
Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 189–206.
[Online]. Available: http://doi.acm.org/10.1145/2048066.2048083

[15] R. Gopalakrishna, E. H. Spafford, and J. Vitek, “Efficient intrusion
detection using automaton inlining,” in Proceedings of the 2005 IEEE
Symposium on Security and Privacy, ser. SP ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 18–31. [Online]. Available:
http://dx.doi.org/10.1109/SP.2005.1

[16] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
ser. SP ’01. Washington, DC, USA: IEEE Computer Society,
2001, pp. 156–. [Online]. Available: http://dl.acm.org/citation.cfm?id=
882495.884434

[17] S. Sankaranarayanan, A. Chakarov, and S. Gulwani, “Static analysis
for probabilistic programs: Inferring whole program properties from
finitely many paths,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp. 447–458.
[Online]. Available: http://doi.acm.org/10.1145/2491956.2462179

[18] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, ser. CCS ’02. New
York, NY, USA: ACM, 2002, pp. 255–264. [Online]. Available:
http://doi.acm.org/10.1145/586110.586145

[19] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for
statistical fault localization,” in International Symposium on Software
Testing and Analysis, 2010, pp. 73–84.

[20] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated
Vulnerability Analysis: Leveraging Control Flow for Evolutionary
Input Crafting,” in Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual, 2007, pp. 477–486. [Online].
Available: http://www.acsa-admin.org/2007/papers/22.pdf

[21] T. Ball and J. R. Larus, “Branch prediction for free,” in
Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, ser. PLDI ’93. New York,
NY, USA: ACM, 1993, pp. 300–313. [Online]. Available: http:
//doi.acm.org/10.1145/155090.155119

[22] B. Calder, D. Grunwald, M. P. Jones, D. C. Lindsay, J. H. Martin,
M. Mozer, and B. G. Zorn, “Evidence-based static branch prediction
using machine learning,” ACM Trans. Program. Lang. Syst., vol. 19,
no. 1, pp. 188–222, 1997.

[23] Y. Wu and J. R. Larus, “Static branch frequency and program
profile analysis,” in Proceedings of the 27th annual international
symposium on Microarchitecture, ser. MICRO 27. New York,
NY, USA: ACM, 1994, pp. 1–11. [Online]. Available: http:
//doi.acm.org/10.1145/192724.192725

[24] R. P. L. Buse and W. Weimer, “The road not taken: Estimating path
execution frequency statically,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 144–154. [Online].
Available: http://dx.doi.org/10.1109/ICSE.2009.5070516

[25] DYNINST binary instrumentation technology. http://www.dyninst.org.
[26] Audit framework. https://wiki.archlinux.org/index.php/Audit

framework.
[27] M. Chambers, K. Lopez, and C. Mortensen, cost of Security (Audit-

ing Focus). http://institute.lanl.gov/isti/summer-school/cluster network/
projects-2011/2011YellowTeam LopezMortensenChambers.pdf.

[28] J.-M. Francois, “jahmm,” http://jahmm.googlecode.com/, 2009.
[29] W. Lee, S. Stolfo, and K. Mok, “A data mining framework for building

intrusion detection models,” in Security and Privacy, 1999. Proceedings
of the 1999 IEEE Symposium on, 1999, pp. 120–132.

[30] J. T. Giffin, S. Jha, and B. P. Miller, “Efficient context-sensitive intrusion
detection,” in Network and Distributed System Security Symposium
(NDSS), 2004.

[31] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy, ser. SP ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 62–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=829515.830554

[32] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller,
“Formalizing sensitivity in static analysis for intrusion detection,” in
IEEE Symposium on Security and Privacy, 2004.

[33] J. T. Giffin, S. Jha, and B. P. Miller, “Detecting manipulated remote
call streams,” in Proceedings of the 11th USENIX Security Symposium.
Berkeley, CA, USA: USENIX Association, 2002, pp. 61–79. [Online].
Available: http://dl.acm.org/citation.cfm?id=647253.720282

[34] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” in Proceedings
of the 12th ACM Conference on Computer and Communications
Security, ser. CCS ’05. New York, NY, USA: ACM, 2005, pp. 340–
353. [Online]. Available: http://doi.acm.org/10.1145/1102120.1102165

[35] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, Aug. 2014,
pp. 941–955. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/tice

[36] N. L. Petroni and M. W. Hicks, “Automated detection of persistent
kernel control-flow attacks,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2007, p. 103115.

[37] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in
ACM Conference on Computer and Communications Security, Y. Chen,
G. Danezis, and V. Shmatikov, Eds. ACM, 2011, pp. 29–40.

[38] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,”
in Proceedings of the 22-nd USENIX Conference on Security,
ser. SEC’13. Berkeley, CA, USA: USENIX Association, 2013,
pp. 337–352. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2534766.2534796

[39] A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide
control flow integrity for exploit detection and diagnosis,” in
Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’13. New
York, NY, USA: ACM, 2013, pp. 311–322. [Online]. Available:
http://doi.acm.org/10.1145/2484313.2484352

[40] J. Noorman, N. Nikiforakis, and F. Piessens, “There is safety in
numbers: Preventing control-flow hijacking by duplication,” in Secure
IT Systems, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7617, pp. 105–120. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34210-3 8

[41] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Proceedings of the 2014
IEEE Symposium on Security and Privacy, ser. SP ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 575–589. [Online].
Available: http://dx.doi.org/10.1109/SP.2014.43

[42] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in Proceedings of the 2008 IEEE
Symposium on Security and Privacy, ser. SP ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 263–277. [Online]. Available:
http://dx.doi.org/10.1109/SP.2008.30

[43] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in Proceedings of the 2006 IEEE Symposium on Security and Privacy,
ser. SP ’06. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 48–62. [Online]. Available: http://dx.doi.org/10.1109/SP.2006.12

[44] K. O. Elish, D. Yao, B. G. Ryder, and X. Jiang, “Profiling user-trigger
dependence for Android malware detection,” Computers & Security,
vol. 49, pp. 255–273, March 2015.

[45] K. Elish, D. Yao, and B. G. Ryder, “On the need of precise inter-app
ICC classification for detecting Android malware collusions,” in Pro-

ceedings of IEEE Mobile Security Technologies (MoST), in conjunction
with the IEEE Symposium on Security and Privacy, May 2015.

[46] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou,
and X. Wang, “Effective and efficient malware detection at the end
host,” in Proceedings of the 18th Conference on USENIX Security
Symposium. USENIX Association, 2009, pp. 351–366. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855768.1855790

[47] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection of
anomalous system call arguments,” in In Proc. of the 8th European
Symposium on Research in Computer Security. Springer-Verlag, 2003,
pp. 326–343.

[48] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 147–160. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298470

[49] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani,
“Probabilistic programming,” in Proceedings of the Future of Software
Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014,
J. D. Herbsleb and M. B. Dwyer, Eds. ACM, 2014, pp. 167–181.
[Online]. Available: http://doi.acm.org/10.1145/2593882.2593900

[50] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon, and J. Borgstroem,
“Bayesian inference for probabilistic programs via symbolic execution,”
Microsoft Research, Tech. Rep. MSR-TR-2012-86, 2012.

[51] P. Mardziel, M. S. Alvim, and M. Hicks, “Adversary gain vs. defender
loss in quantified information flow,” in Proceedings of the International
Workshop on Foundations of Computer Security (FCS), Jul. 2014.

[52] P. Mardziel, M. S. Alvim, M. Hicks, and M. Clarkson, “Quantifying
information flow for dynamic secrets,” in Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), May 2014.

[53] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa, “Dynamic
enforcement of knowledge-based security policies using probabilistic
abstract interpretation,” J. Comput. Secur., vol. 21, no. 4, pp. 463–
532, Jul. 2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2590624.2590625

[54] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley,
D. Grossman, and L. Ceze, “Expressing and verifying probabilistic
assertions,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 112–122. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594294

[55] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from “Big Code”,” in Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’15. New York, NY, USA: ACM, 2015, pp. 111–124. [Online].
Available: http://doi.acm.org/10.1145/2676726.2677009

[56] R. Segala, “Modeling and verification of randomized distributed real-
time systems,” Massachusetts Institute of Technology, Tech. Rep.
MIT/LCS/TR-676, June 1995, ph.D. dissertation.

[57] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “A survey
of techniques for incremental learning of HMM parameters,” Inf.
Sci., vol. 197, pp. 105–130, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.ins.2012.02.017

[58] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless
framework for security through diversity,” in In Proceedings of the 15th
USENIX Security Symposium, August 2006.

Appendix

A. Matrix Properties After Aggregation

Suppose that function fn is called within function fm. The
call-transition matrix of fn is merged into the call-transition
matrix of function fm during aggregation.

For property 1 in Definition 5, consider the first row of
function fm. After one aggregation operation between caller

function fm and callee function fn, the new sum of the the
probabilities of the first row is:

P fm1st row after =
∑
k 6=kfn

P
tfm
εk

+ P
tfm
εkfn
∗ (

∑
k 6=k

ε
′

P
tfn
εk)

+ P
tfm
εkfn
∗ P tfn

εε′
∗ (

∑
k

P
tfm
jfnk∑
l P

tfm
jfn l

)

(6)

In Equation (6), part 1 represents the transition probabilities
that are not related to callee function fn, and part 2 represents
the transition probabilities that are added based on the first row
of fn’s transition matrix due to aggregation. Part 3 includes the
added transition probabilities when callee function fn makes
no call.

Equation (6) can be reduced as follows.

P fm1st row after =
∑
k 6=kfn

P
tfm
εk + P

tfm
εkfn
∗ (

∑
k 6=k

ε
′

P
tfn
εk)

+ P
tfm
εkfn
∗ P tfn

εε′
∗ 1

=
∑
k 6=kfn

P
tfm
εk + P

tfm
εkfn
∗ (

∑
k

P
tfn
εk)

=
∑
k 6=kfn

P
tfm
εk + P

tfm
εkfn
∗ 1

=
∑
k

P
tfm
εk = P fm1st row before = 1

(7)

Thus, property 1 holds for the first row of the aggregated
matrix. Similarly, one can show that property 1 holds for the
first column.

For property 2 in Definition 5, we consider a call fx
in function fm, fx 6= fn. After aggregation, the outgoing
probability for fx is:

P fxout after =
∑
k 6=kfn

P
tfm
jfxk

+ P
tfm
jfxkfn

∗ (
∑
k 6=k

ε
′

P
tfn
jεk

)

+ P
tfm
jfxkfn

∗ P tfnjεkε′
∗ (

∑
k

P
tfm
jfnk∑
l P

tfm
jfn l

)

(8)

Similarly, in Equation (8), for the right-hand side, part 1
represents the transition probabilities that are not related to
callee function fn, and part 2 represents the transition proba-
bilities that are added based on the first row of fn’s transition
matrix due to aggregate. Part 3 includes the added transition
probabilities when callee function fn makes no call.

Equation (8) can be reduced as:

P fxout after =
∑
k 6=kfn

P
tfm
jfxk

+ P
tfm
jfxkfn

∗ (
∑
k 6=k

ε
′

P
tfn
jεk

)

+ P
tfm
jfxkfn

∗ P tfnjεkε′
∗ 1

=
∑
k 6=kfn

P
tfm
jfxk

+ P
tfm
jfxkfn

∗ (
∑
k

P
tfn
jεk

)

=
∑
k 6=kfn

P
tfm
jfxk

+ P
tfm
jfxkfn

∗ 1

=
∑
k

P
tfm
jfxk

= P fxout before

(9)

Similarly, for incoming probabilities we have P fxin after =

P fxin before. Thus, property 2 holds for aggregated matrix.

