
MadeCR: Correlation-based

Malware Detection for Cognitive Radio

Yanzhi Dou, Kexiong (Curtis) Zeng, Yaling Yang, Danfeng (Daphne) Yao

Virginia Polytechnic Institute and State University

{yzdou, kexiong6, yyang8, danfeng}@vt.edu

Abstract—Cognitive Radio (CR) is an intelligent radio tech-
nology to boost spectrum utilization and is likely to be widely
spread in the near future. However, its flexible software-oriented
design may be exploited by an adversary to control CR de-
vices to launch large scale attacks on a wide range of critical
wireless infrastructures. To proactively mitigate the potentially
serious threat, this paper presents MadeCR, a Correlation-based
Malware detection system for CR. MadeCR exploits correlations
among CR applications’ component actions to detect malicious
behaviors. In addition, a significant contribution of the paper is
a general experimentation method referred to as mutation testing
to comprehensively evaluate the effectiveness of the anomaly
detection method against a large number of artificial malware
cases. Evaluation shows that MadeCR detects malicious behaviors
within 1.10s at an accuracy of 94.9%.

I. INTRODUCTION

Cognitive Radio (CR) refers to an intelligent radio that can

be programmed and configured dynamically. It is proven to

provide drastically improved spectrum utilization. While the

benefits of CR are obvious and its future appears promising,

it also brings along uniquely challenging security and informa-

tion assurance issues [1]. A traditional radio can only affect its

own network because its operation spectrum is constrained by

its fixed hardware design. Thus, while malware may affect

these traditional radios, the impact is limited to a single

wireless system. CR, however, often has flexible software-

oriented design that can be configured to opportunistically ac-

cess available spectrum in an expansive spectrum range. Thus,

by remotely exploiting the inherent vulnerability of software in

CR, an adversary can control CR devices to launch large scale

attacks on wireless systems at many different spectrum bands.

This broad potential threat makes compromised CR much

more destructive than traditional systems. Therefore, unlike

a traditional wireless system, where it may be acceptable to

consider security as an afterthought, security issues of CR

must be addressed proactively for this technology to pass

regulation requirement and become widely deployed.

Existing proposals for CR security fall into the following

three categories. The first category (e.g., [2], [3]) seeks to

prevent downloading of malicious software into CR systems

through the use of digital signature and encryption. The second

category (e.g., [1], [4]) leverages ordinary personal computer

protection measures to reduce the chance that CR systems

be infected with malicious software. The third category of

methods (e.g., [5], [6]) focus on the networking aspect of CR

security, where mechanisms are designed to ensure that CR

networks can resist attacks from compromised CR nodes. De-

spite these recent advances in CR security, run-time software

behavioral monitoring has not been systematically investigated

for CR. By integrating proper domain knowledge, the run-time

behavioral monitoring method can prevent CR nodes from

being compromised in the first place.

The aim of this paper is to enhance the security of CR

device itself by designing an effective malware detection sys-

tem named MadeCR (a Correlation-based Malware detection

system for CR). Due to the proactive defense requirement on

CR security, MadeCR must be built and evaluated while there

is a lack of existing CR malware. This means that MadeCR

must effectively detect zero-day attacks. MadeCR achieves

accurate detection by exploiting the correlations among CR

component actions. A normal-operating CR exhibits strong

correlations among its operational events at software level.

A CR that is infected by malware, however, is unlikely to

exhibit similar correlations. Leveraging anomaly detection

techniques [7], MadeCR builds models of normal audit data (or

data containing no intrusions) to extract correlation properties

among CR actions and detects malware based on measuring

the deviations of their behaviors from the normal model. To

the best of our knowledge, this is the first work that enhances

the security of CR networks at device level through monitoring

CR applications’ behaviors.

Although anomaly detection is widely used in intrusion

detection systems (IDS) in many areas, it encounters the

following unique challenges when first applied to CR systems.

(1) CR anomaly analysis needs to include data flow analysis,

which is generally considered too difficult and too expensive

due to the occurrence of continuous numeric values in data

calculation and data passing. Traditional data flow analysis at-

tempting to enumerate all the appearing samples in continuous

numeric space would lead to state explosion, and hence data

flow analysis is usually avoided in previous IDS works [8].

Monitoring data flow is important for the correct execution of

a CR application and cannot be ignored. In CR, data from both

external environments (e.g., sensed licensed user signals) and

internal resources (e.g., waveform capabilities) is collected and

then analyzed by cognitive engine, which is responsible for

configuring radio and system parameters accordingly. These

configuration parameters are then delivered to software radio

platform to alter the radios’ behaviors. In the process, one

small data error can drastically alter the behaviors of a CR.

(2) CR anomaly analysis needs to detect suppression attacks,

which are not considered in existing IDSs. We define a

suppression attack in CR as an attack suppresses CR nodes’

desirable behaviors, making some functionalities of the nodes

become inactive. For example, in normal situations, a CR

user needs to periodically check if licensed users appear in

its current channel. A malware may suppress such checking

action so that the CR user will never switch channel, resulting

in jamming to licensed users. Traditional IDSs cannot detect

suppression attacks because the particular category of attacks

causes harm not by introducing new undesirable behaviors, but

rather by suppressing a CR application’s desirable behaviors.

Suppression attacks represent a large category of anomalies

where probability distribution of function call invocations is

skewed, differing from the distribution in normal executions.

This kind of attacks is possible when a vulnerable CR node

is hijacked and its control flow is altered.

(3) Traditional IDSs evaluate their detection performance on

the malware captured in the real environment. Since CR has

not reached a widely-deployed state, there is a lack of real

malware cases in the field that can be used to evaluate the

detection accuracy of our proactive defending scheme. How

to conduct effective evaluation becomes the third challenge.

In this paper, we make the following contributions:

• We involve data flow analysis in the design of MadeCR

and solve the complexity issue by innovatively combining

clustering techniques with CR operation features.

• We solve the unique challenge of suppression attacks by

designing new computational methods for security verification

against them.

• We propose a new approach to automatically generate ar-

tificial CR malware cases through mutation testing techniques.

• We employ a new method to automatically identify the

critical vulnerable components in CR system and refine the

detection system accordingly.

The rest of the paper is organized as follows. We introduce

the attack model and security goals in Section II. In Section

III, we present the design of MadeCR in detail. After that,

we describe the approach to generate artificial malware cases

for evaluation in Section IV. Evaluation results are showed in

Section V. We provide the related work in Section VI. Finally,

we conclude this paper in Section VII.

II. ATTACK MODEL AND SECURITY GOALS

We consider a setting where an attacker can maliciously

modify the CR execution during software download, initial-

ization and runtime [9]. For example, the attacker may:

• Reconfigure a CR node with improper RF parameters

(e.g., center frequency, transmit power, modulation scheme).

• Suppress some functionalities of a CR node by inserting

infinite loop before executing the corresponding code seg-

ments.

Generally speaking, an attacker’s goal is to make a CR func-

tion out of the regulations, which causes interference to other

users’ normal communication or even denial-of-service (DoS)

attacks on critical public wireless infrastructures. Another

possible goal is to gain disproportionate access to network

resources for some CR system owners.

The goal of MadeCR is to detect malicious modifications to

CR execution. In particular, MadeCR needs to guarantee that

if the malicious modifications to CR execution are targeted at

security-critical parts (e.g., RF parameters), it can accurately

detect them. GNURadio and USRP – the most popular soft-

ware and hardware platform for CR development – are used

as the foundation for developing and evaluating the prototype

of MadeCR.

The design of MadeCR has the following assumptions:

Assumption 1: To cause harm, a compromised CR applica-

tion must conduct different behaviors from that normally seen,

and these behaviors may be readily monitored.

Assumption 2: The training data is nearly complete with

regard to all possible normal behaviors of a CR application.

This is a key assumption for using a learning algorithm for

anomaly detection [10]. We satisfy this by the design of the

Application Driver Component of MadeCR (see Section III)

Assumption 3: The detection system itself will not be

compromised.

This is an implicit assumption for nearly all IDSs. It can

be satisfied by putting the detection system in a more secure

environment through the use of a virtual machine monitor

(VMM) proposed in [11].

III. SYSTEM DESIGN

The overview of MadeCR is shown in Figure 1. It

is composed of several components, including Application

Driver, Operation Tracer, Argument Processor, Normal Profile

Database, Anomaly Detector, and Anomaly Feature Database.

Argument Processor and Anomaly Detector are the most im-

portant security components in our design. Argument Proces-

sor is able to expose the essence in data flow correlations and

reduce the complexity of data flow analysis by innovatively

adopting clustering techniques. Anomaly Detector aids in de-

tecting suppression attacks by introducing new computational

methods for security verification to N−gram model [12] and

Hidden Markov Model (HMM) [13].

A. Application Driver

In the training phase, Application Driver needs to traverse as

many as possible branches while executing a CR application,

so that we can obtain a more comprehensive description of

the application’s behaviors. Therefore, the Application Driver

executes the CR application for a large number of times.

At each time, the application is fed with varied user inputs,

application demands and operation environment.

B. Operation Tracer

Operation Tracer focuses on monitoring radio-related func-

tion calls because they are most relevant to CR operations.

A CR application needs to invocate these function calls to

access system resources and reconfigure the radio. In MadeCR,

we build a prototype of Operation Tracer to record CR

Runtime Detection Phase

Off-line Training Phase

Operation Tracer

Application

Driver

Clean State CR

App Log File

Operation Tracer
Application

Driver

Runtime CR

App

Argument Processor

Training Mode

Argument Processor

Detection Mode

Anomaly

Detector

Anomaly

Feature

Database

Normal Profile

Database

Fig. 1. Overview of MadeCR

applications’ function calls to GNU Radio libraries. Examples

of the recorded function calls are set center freq(freq),
sample rate = get samp rate(), and send pkt(msg). As

CR applications using GNU Radio are primarily written in

Python programming language, Operation Tracer leverages

Python’s buildin tracing modules to record function call re-

lationships. For each function being called, its name, file path

of its definition, beginning line number of its function body, ar-

guments passed to it and its return value are recorded. The first

three items can uniquely identify a function, which can provide

information of vulnerable points where the attacker aims. The

arguments and return values of function calls are important

for monitoring CR applications’ data flow. The function name,

file path, line number, and return values are collected using

Python’s “trace” module. The arguments are obtained through

the “inspect” module of Python. Both numbers and strings in

arguments and return values are recorded. The trace data is

chronologically arranged and stored into a log file, which is

encrypted to avoid being tampered with.

C. Argument Processor

The complexity of data flow analysis is known to be very

high and hence is avoided in existing intrusion detection

works. However, analyzing data flow is absolutely necessary in

CR since it is critical for CR operation. MadeCR innovatively

uses Argument Processor to solve this challenge. In a high

level, Argument Processor reduces the potentially very large

data into sequences of a small number of states. Each of the

states is uniquely identified by a label. This transformation

converts data in data flow from continuous space into discrete

space.

1) Overall Design: The inputs to Argument Processor are

the trace data in the form of sequences of function calls. To

expose the correlations between each function’s input argu-

ments and return value, the first processing step of Argument

Processor disintegrates every function call instance in the trace

data to two elements, one with only the input arguments and

one with only the return value. In order to be brief yet not

cause ambiguity, we use argument as the general term for

both input argument and return value in the rest of this paper.

In the second step, to reduce data analysis complexity,

Argument Processor compresses the infinite choices of argu-

ment values into a finite number of clusters. The purpose of

the clustering operation is to reduce the state space in data

flow analysis. Finding the right state space is a non-trivial

problem. In CR, some functions do not have one single normal

behavior but a variety of normal behaviors in different yet

naturally occurring operation contexts of a CR application.

Under different operation contexts, these functions may take

different argument values as input, then act differently in

response to these inputs, and finally output different return

values. Argument Processor must use a small number of states

to describe all these possible set of normal data and control

flow behaviors under the entire range of the potentially infinite

natural operation contexts. Argument Processor solves this

challenge by leveraging the fact that while the number of

unique operation contexts and input/return data values may

be infinite, similar operation contexts usually lead to similar

arguments, which then often create the same function behavior.

Following this observation, in the training mode, Argument

Processor divides elements of the same function into clus-

ters based on these elements’ argument values. The element

instances in each cluster have similar argument values and

hence are likely to be caused by similar contexts and exhibit

similar function behaviors. Each cluster is given a unique name

and hence the sequences of function calls in the training trace

data become the sequences of cluster labels. Figure 2 shows

an example of the clustering process. Similarly, in the runtime

detection mode, Argument Processor classifies each element

in the runtime trace into the closest cluster according to its

argument values and converts the trace also into a sequence

of cluster labels.

2) Training Mode: Specifically, the clustering algorithm

in the training mode works as follows. Recall that Opera-

tion Tracer records argument values, including numbers and

strings, in the training mode. Some of these argument values

are drawn from a small set of possible alternatives (i.e. tokens,

state flags of CR operation, elements of an enumeration such

like modulation schemes) and are called countable arguments.

Arguments that cannot be enumerated are defined to be

uncountable. For example, the channel signal strength acquired

by sensors, choices of sampling rate, and level of noise

floor are all uncountable arguments. Countable arguments are

naturally separated and each of its unique value creates its

own element cluster. Uncountable arguments can be divided

ret1 = foo(arg1, arg2)

ret2 = foo(arg3, arg4)

ret3 = foo(arg5, arg6)

Function Call Sequence

...
...

...
...

foo_input_ele(arg1, arg2)

foo_output_ele(ret1)

foo_input_ele(arg3, arg4)

foo_output_ele(ret2)

foo_input_ele(arg5, arg6)

foo_output_ele(ret3)

...
...

...

Element Sequence

...

foo_input_ele_cluster1

foo_output_ele_cluster1

foo_input_ele_cluster2

foo_output_ele_cluster2

foo_input_ele_cluster1

foo_output_ele_cluster1

...
...

...

Element Cluster Label Sequence

...

Training Mode

Clustering

 foo_input_ele(arg1, arg2)

 foo_input_ele(arg3, arg4)

 foo_input_ele(arg5, arg6)

 foo_input_ele(arg1, arg2)

 foo_input_ele(arg5, arg6)

foo_input_ele(arg3, arg4)

foo_output_ele(ret1)

foo_output_ele(ret2)

foo_output_ele(ret3)
 cluster 2:

foo_output_ele(ret2)

 cluster 1:

foo_output_ele(ret1)

foo_output_ele(ret3)

Clustering

Elements

Elements

foo_input_ele_cluster1

foo_input_ele_cluster2

foo_output_ele_cluster1

foo_output_ele_cluster2

Fig. 2. An example of clustering process

further into two groups: uncountable strings and uncountable

numbers. Uncountable strings are ignored because most of

them are used to represent text messages, such as operating

messages printed to the screen, and do not affect execution

flow.

For uncountable numbers, a single-linkage and bottom-up

hierarchical agglomerative clustering algorithm [14] is adopted

to acquire clusters for elements with uncountable numbers

as their arguments. Defining the values of an element’s un-

countable arguments as an argument vector, the clustering

algorithm initially treats each element with its argument vector

as a singleton cluster. It then successively agglomerates pairs

of clusters until stop criterion is satisfied, as shown in the

following algorithm:

a) Each of the Md elements with different argument vectors

is assigned to an individual cluster at the outset. A

Md ×Md distance matrix D, whose entry at (i, j) is the

distance between argument vector i and j, is computed.

b) Among all the current clusters, two clusters with the

smallest distance min(D) are picked.

c) The two picked clusters are merged and the distance

matrix D is updated by recomputing the distance between

the newly aggregated cluster and the remaining ones.

d) Repeat step b and c until the total number of final clusters

Ns is reached.

Single-linkage agglomerative clustering algorithm defines

the distance between two clusters as the minimum distance

between two elements, one in each cluster. The distance d

between two elements is defined by standardized euclidean

distance of their argument vectors:

di,j =

√

√

√

√

M
∑

m=1

(

a
(m)
i − a

(m)
j

σ
(m)
a

)2

, (1)

where di,j is the distance between argument vector i and ar-

gument vector j. Argument vector has entries of a(1), ...a(M).

σ
(m)
a is the standard deviation of argument a(m) over all

invocation cases of the element in the training data.

“L method” proposed in [15] is adopted to determine the

optimal number of clusters (i.e. the optimal Ns) for the stop

criterion. In each step b) of the agglomerative clustering

approach mentioned above, we record the distance between

the two clusters which are the most similar, and denote it as

merge distance. An evaluation graph is plotted by taking the

number of clusters as x axis and the merge distance as y axis.

The L method finds the knee point in the evaluation graph,

which is the point of maximum curvature. This knee point

is the optimal Ns because it represents a balance of clusters

that are both highly homogeneous, and also dissimilar to each

others.

3) Detection Mode: In detection mode, Argument Proces-

sor applies k-nearest neighbours (k-NN) algorithm [16] to

classify every runtime element into an element cluster, which

is built in the training mode. Then, the Argument Processor

assigns the runtime element a label that indicates the cluster

it belongs to. k-NN algorithm classifies a runtime element

as follows. Using (1), it computes the distances between the

runtime element and all the training-time elements that map to

the same function call . Then, the first k training-time elements

that are closest to the runtime element are picked out and form

a set. The runtime element is classified into the cluster that has

the largest proportion of elements in the set. The underlying

assumption is that elements belonging to the same cluster will

gather together in the space of argument vector.

4) Computational Complexity: In the training mode, the

computational complexity of agglomerative clustering ap-

proach is O(Md
2) [14]. “L method” needs O(Md) compu-

tations to find the knee point of a evaluation graph based on

the results of agglomerative clustering approach. So the total

computational complexity of the training mode is O(Md
2).

In the detection mode, the computational complexity of k-NN

algorithm is O(Md).

D. Anomaly Detector

Through Argument Processor, the trace of CR applica-

tions are converted into sequences of element cluster labels.

Anomaly Detector aims at recognizing abnormal sequences

whose composition and variety substantially deviate from

normal executions. In Anomaly Detector, we design new

computational methods for security verification against the

unique suppression attacks in CR. We demonstrate how new

security rules can be integrated into existing N−gram and

HMM models. Specifically, we detect abnormal distributions

of cluster labels through extracting statistical data from train-

ing data sets.

1) N−gram model: Given a cluster label sequence, all the

unique substrings of fixed length N in the label sequence are

called N−grams. They can be generated by sliding an N−size

window along the label sequence and recording all the unique

substrings in the process. The set of these substrings is named

an N−gram set. In the training phase, N−gram sets are put

into Normal Profile Database, while in the detection phase,

Anomaly Detector compares runtime N−gram sets with the

N−gram sets in Normal Profile Database to calculate their

deviations using the following four metrics:

• Metric Noc is called the number of missing N−grams and

is defined to be the number of N−grams that are in Normal

Profile Database but not in the runtime set. Ideally, we expect

Noc to be very small for new instances of normal trace and

jump significantly when suppression attacks occurs.

• Metric SAc is a local measure. Recall that we run a clean

state CR application for many times in Application Driver.

Thus, we get many training N−gram sets, Js1, Js2, ..., Jsn,

in Normal Profile Database, where each training N−gram set

corresponds to one execution of the CR application. For each

training N−gram set, we compute the number of N−grams

that are in the training set but not in the runtime N−grams

set I . The training N−gram set that has the smallest such

number, denoted as Jsk, is termed as the most similar training

set to the runtime N−gram set I . SAc is defined to be the

maximum Hamming distance between an N−gram j in Jsk
and I , namely SAc = maxj∈Jsk

d(j, I). Here, the Hamming

distance between an N−gram j and an N−gram set I is

defined as the minimum hamming distance between j and any

N−gram in I . The hamming distance between two N−grams

i and j is simply the number of positions where the two

N−grams differ.

• Metric No is defined as the number of outliers, which are

the N−grams appear in the runtime N−gram set but not in

the normal N−gram database. Ideally, we expect No to be

zero for new instances of normal trace and jump significantly

when anomalous behaviors occurs.

• Metric SA is defined as SA = maxi∈I minJsj∈D d(i, Jsj),
where D is Normal Profile Database and I is the runtime

N−gram set.

No and SA are proposed in the existing literature [12],

which focus on detecting the existence of undesirable behav-

iors. However, the two metrics are not able to capture the

suppression attacks, which cause harm not by introducing new

undesirable behaviors, but rather by suppressing a CR appli-

cation’s desirable behaviors. To mitigate suppression attacks,

we design the other two metrics, Noc and SAc, to capture the

lack of desirable behaviors from a runtime trace.

We propose the following criterion to aggregate the four

metrics to determine whether a runtime case is malicious:

R = (Noc ≥ toc ∧ SAc ≥ tAc) ∨ (No ≥ to ∧ SA ≥ tA) (2)

The runtime case is marked malicious if R = True. toc, tAc,

to, tA are the corresponding thresholds, which must be set

appropriately to reduce false positive rate while attempting

to detect more malware. These thresholds are set empirically.

To figure out a proper toc, we count the number of “outlier”

N−grams of each training set by comparing the normal

database excluding a training set with the particular training

set. toc is configured as the largest “outlier” number among

all the training sets. Essentially, toc tries to capture the largest

possible suppressed behaviors that can be exhibited by a

normal trace. Hence, if a program trace’s Noc is larger than

toc, it is very likely that some functionality of the program

is maliciously suppressed. We set tAc as N , the number of

elements in an N−gram. We set to as 1 and tA as
⌈

N
3

⌉

,

which means that we regard a case as malicious if it contains

at least one N−gram whose hamming distance is greater than
⌈

N
3

⌉

to the normal database.

2) Hidden Markov Model: Assuming that the execution of

a CR application follows some state transitions, the normal

CR behavior can be modeled by constructing a HMM in

Normal Profile Database. The states in the HMM are not

directly observable, but each state can randomly produce

element cluster labels following certain emission probability

distribution. A state can transit to other states with some

transition probability. We can construct this HMM in the

training phase by using the sequences of element cluster labels

produced by the Argument Processor as follows.

First, we set number of states equal to the number of unique

element cluster labels. Transitions are allowed to be made

between any two states. We adopt the well-known Baum-

Welch algorithm [17] to train the HMM. The algorithm uses

the element cluster label sequences as training data and has

four steps, i.e. initialization, E-step, M-step, and iteration.

Transition and emission probabilities are initialized randomly.

During training, the state probabilities and emission probabili-

ties are iteratively adjusted in the E-step and M-step to increase

the likelihood that the model will generate the traces in the

training data. Training is terminated when the likelihood of

the model producing a second set of normal sequences (not

used in training) stops improving. In this way, over-fitting is

avoided.

Using the HMM in Normal Profile Database, Anomaly

Detector can detect suppression attacks as follows. Traces

of suppression attacks tend to produce less unique state

transitions, because some desirable transitions representing the

corresponding desirable function invocations are suppressed.

Thus, Anomaly Detector uses Viterbi algorithm [17] to cal-

culate the most likely state transition sequence of a runtime

trace. The number of unique state transitions in the sequence is

counted and denoted as Q. If Q is smaller than a threshold QT ,

the runtime trace is marked to be generated under suppression

attacks. The value of QT is set as the smallest number of

unique transitions among all the normal traces.

To detect other attacks, Anomaly Detector computes the

likelihood P of a runtime trace to be produced by the HMM

using the forward algorithm [17], and then compare this

probability with a threshold PT . If P < PT , the trace is

marked malicious. As the likelihood of producing a trace is

sensitive to its length in HMM, we divide it by the trace length

for normalization so that the comparison with other traces of

different lengths can be fair. The proper value of PT can be

found through experiments as described in Section V.

Combining the two detection methods, the aggregated

HMM detection criterion in Anomaly Detector is:

R = (Q < QT) ∨ (P < PT) (3)

If R = True, the trace is malicious.

3) Comparison of Space and Time Complexity:

• Storing HMM in Normal Profile Database takes smaller

space than N−gram. Assume the training data has S unique

element cluster labels. HMM’s transition matrix and emission

matrix have S2 values to store, respectively. For N−gram, in

the worst case, the number of unique N-grams to store can be
S!

(S−N)! (N is the window size).

• Generally, in the training phase, the time complexity of

N−gram is smaller than HMM; In the detection phase, the

time complexity of N−gram is larger than HMM. In the

training phase, for HMM, the Baum-Welch algorithm has a

complexity of O(TS2) [17], where T is the length of the trace

of cluster labels. For N−gram, incorporating a new training

trace into Normal Profile Database only takes O(T). In the

detection phase, the complexity of the Viterbi algorithm and

the forward algorithm used in the HMM approach are both

O(TS2) [17]. For N−gram, it takes O(N) comparisons to

determine whether a runtime N−gram is a mismatch if the

normal N−grams are stored in a forest of trees. To compute

the distance between a runtime N−gram and the normal

N−gram database, it requires O(DN) comparisons, where

D is the number of N−grams in the the normal database. If

D ≈ SN , the complexity will be NSN .

E. Anomaly Feature Database

All the anomaly behaviors captured during the execution

of CR applications are recorded. The logging data obtained

in Operation Tracer provides a comprehensive record of the

anomalies, including which parameters, which function calls,

and which files may behave anomalously. The data is sent

to a remote Anomaly Feature Database, which collects the

anomaly reports from every CR node and mines the malware

patterns from the vast data for further signature-based detec-

tion. Moreover, the anomaly data exposes the vulnerable parts

of the software, which will aid the maintainers in fixing them

and updating the software to defend further attacks.

F. System Refinement

We further improve the detection accuracy and performance

of our solutions by refining the system. Specifically, we

automatically select a set of security-critical function calls,

and only monitor their running state while neglecting other

irrelevant calls. The refinement method is able to lower

MadeCR’s false alarm rate by reducing the ambiguity caused

by irrelevant logging data. Additionally, by concentrating on

the most crucial function calls, it can increase both detection

accuracy and detection speed.

The refinement method is based on the observation that

many intercepted function calls provide little contextual infor-

mation of the running states of CR applications. For example,

some functions are only involved in printing messages on

screen, and some functions are only tokens of thread schedul-

ing in the Python programming language. What’s worse, the

latter group of the function calls are often lead to false

alarms because these functions tend to occur at unexpected

locations in execution traces. On the other hand, since the

operation fidelity of CR is determined by the integrity of its RF

parameters, function calls that can alter the values of the RF

parameters directly or indirectly are critical for CR security.

Based on the above observation, in the refined version of

MadeCR, only these security-critical function calls are logged

by Operation Tracer and processed by the later components of

MadeCR. How to automatically identify these security-critical

function calls will be addressed in Section IV.

IV. ARTIFICIAL MALWARE GENERATION

Traditional IDSs follow a reactive defense strategy, which

means that they are only built after the protected systems

have been attacked. Thus, the effectiveness of IDSs can be

evaluated using real malware. However, such reactive defense

strategy is not appropriate for CR due to CR’s potentially

serious threat to not only CR systems but also other critical

wireless infrastructures. MadeCR, thus, is developed before the

appearance of real malware. This poses a challenge on how

to assess the effectiveness of MadeCR. Traditional evaluation

methods using the real-world malware are no longer feasible

due to a lack of malware in the new field. To fill the gap

between proactive defense methods and their evaluations, we

propose a method to automatically generate artificial malware.

1) Observation: The artificial malware cases are created by

adopting mutation testing techniques, which are currently used

in software testing field. It involves injecting various mutations

into a program’s source code or byte code to create mutants.

A software test’s quality is evaluated by the percentage of

mutants that are caught by the test.

We observe that malware, in a certain sense, can be viewed

as a special type of mutants. A malware case usually needs

to inject malicious code into an application and/or modify

the application’s variable values and instruction execution

sequences. Hence, if a malware detection scheme is effective

on detecting artificially generated mutants at runtime, it should

be also effective on detecting malware in real world. Based on

this rationale, we automatically generate artificial CR malware

by applying mutation operators to GNU Radio software and

applications.

2) Method: As shown in Table I, we apply six mutation

operators on the application at byte code level to automatically

generate mutants. The mutation operators change the original

program in different ways and can create a wide range of

malware-alike behaviors. For example,“VAR” modifies a vari-

able’s value and may cause changes to CR’s center frequency

and transmit power. “JMP” modifies the branch condition,

which can cause a CR application to skip the channel switch-

ing action upon discovery of licensed users. “ARI” and “CMP”

can change the arithmetical operations and comparisons in the

application respectively, which incurs data error (e.g., wrong

computed signal sampling rate). “JPT” makes a program jump

to a random position, which may cause unexpected behaviors.

“IIL” can insert a infinite loop at an arbitrary position, which

can impede the application’s execution and thus suppress its

normal functionalities.

Since mutation testing is not originally designed for mal-

ware generation, not every mutant causes malicious behaviors.

Some mutants are benign and do not change the original

program’s semantics. For example, a mutant that changes

“for(i = 0; i ≤ 5; i + +)” to “for(i = 0; i 6= 5; i + +)”
will not alter the program’s behavior. In addition, some other

mutants only change the unimportant branches and variables

of the testing CR application. For example, some branches are

just involved in writing operation logs to a file, so mutating

them will not affect the radio’s behaviors. The mutants that do

not change the radio’s behaviors are viewed as benign mutants.

To accurately reflect MadeCR’s performance, these benign

mutants are excluded from the testing set and only mutants

that exhibit malicious behaviors are used for evaluation.

TABLE I
DESCRIPTION AND STATISTICS OF MUTATION OPERATORS

Mutation Description # of all # of malicious
operator mutants mutants

JMP Alter Branch Condition 92 55

JPT Randomize Jump Target 491 393

VAR Change Variable Value 597 417

ARI Replace Arithmetic Operator 799 598

CMP Replace Comparison Operator 308 144

IIL Insert Infinite Loop 468 339

Total 2755 1946

3) Identifying security-critical functions calls: Besides

serving as testing cases, the mutants can be used to auto-

matically identify security-critical function calls for system

refinement as follows.

Firstly, we construct a security-critical database, which is

initially composed of all the USRP Hardware Driver (UHD)

APIs that take the RF parameters as input, and output the

corresponding waveforms. The UHD is the final boundary

from software side to hardware side, and all the GNU Radio

applications need to invocate these APIs to reconfigure a

radio. If these APIs behave anomalously, the radio will be

reconfigured with anomalous waveforms. Secondly, we send

all the mutants (including the benign ones) into MadeCR and

obtain their anomaly features (e.g., mismatched N−grams)

in Anomaly Feature Database. If an anomaly feature of a

mutant contains an API that is included in the security-critical

database, all the other function calls in the anomaly feature are

added to the security-critical database. This step is to ensure

that functions that may indirectly cause anomalies in RF

parameters are included in the security-critical database. After

the security-critical database is completed, only the function

calls in the database need to be tracked to detect the malware

targeting at RF parameters.

Since all the function calls that have the potential to alter the

RF parameters are monitored, our refinement method ensures

the validity of RF operation. Similar approaches can also be

used to protect other critical operation parameters of CR.

V. PROTOTYPE & EVALUATION

A prototype of MadeCR is implemented on a host computer

with Intel Core i7-2600 CPU @ 3.40GHz * 8 and 8GB

memory. We set up a CR testbed with GNU Radio 3.7.1 and

three N210 USRPs. Each USRP is individually connected with

a host computer. Two of the USRPs are secondary transceivers

and the rest one is a primary transmitter. The secondary

transceivers execute a CR application derived from CORNET

[18], which is an open-access cognitive radio testbed. In this

application, each secondary transceiver senses both the exter-

nal environment and internal applications’ requirements, and

makes adjustment to its radio parameters accordingly. Specifi-

cally, for external environment, the secondary transceivers will

switch its current transmission channel to a white channel if

it perceives the existence of a primary user on the current

channel; For internal applications’ requirement, the secondary

transceivers will change its transmission bandwidth according

to the applications’ required data rate. The CR application has

altogether 703 lines of source code and 2114 instructions of

byte code. As shown in Table I, after applying mutation testing

techniques, we generate 2755 mutants and 1946 are selected

as malicious ones.

We evaluate two versions of MadeCR: one version uses

N−gram model and the other uses HMM in its Anomaly

Detector. For each version, we consider two implementations:

a basic implementation that analyzes all the intercepted func-

tion calls, and a refined implementation that only analyzes

security-critical function calls. In each case, we focus on

two key metrics: the accuracy in malware detection and

the computation overhead of the detection. We measure the

detection accuracy in terms of true positive (TP) and false

positive (FP). True positive happens when the malicious traces

are detected, while false positive happens when the benign

traces are mistakenly classified to be malicious. In general, the

higher the TP and the lower the FP are, the better the detection

accuracy is. As will be shown later, our results indicate that

the refinement approach proposed in this paper can increase

TP rate and reduce FP rate at the same time, which are often

considered unachievable simultaneously.

To generate normal traces, the original CR application is run

for 2000 times in Application Driver and each time lasts for 22

seconds. 60% of the generated traces are randomly selected for

training, and the rest 40% are used as testing traces to assess

the FP rate of MadeCR. To obtain the malicious testing traces

to evaluate the TP rate, every malicious mutant is executed for

22 seconds in Application Driver.

A. Accuracy

We test both the basic and the refined implementations of

the two versions of MadeCR with different data modeling

methods on the testing traces. The consequent four MadeCR

implementations are denoted as N−gram, N−gram refined,

HMM, and HMM refined respectively. For each MadeCR

implementation, different values of the important configuration

parameters are set and the impact on the detection accuracy of

MadeCR is studied. For N−gram and N−gram refined, the

sliding window size N is a particularly important configuration

parameter. For HMM and HMM refined, the threshold PT ,

which is set to differentiate the likelihood of a malicious trace

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

3 4 5 6 7 8 9 10

N−gram & N−gram refined

N−gram

N−gram refined

3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

N

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

N−gram

N−gram refined

−1.6 −1.4 −1.2 −1 −0.8 −0.6

HMM & HMM refined

HMM

HMM refined

−3.5 −3 −2.5 −2
P

T

 HMM

HMM refined

Fig. 3. TP/FP rate versus different configuration parameters of different
MadeCR implementations (N is the sliding window size in N−gram, PT

is the likelihood threshold in HMM)

to be produced by the learnt HMM from that of normal traces,

is studied. Because likelihoods and its threshold PT tend to

be very small when traces are long, we present the likelihoods

and its threshold PT in logarithmic form.

Our first experiment examines the relationship between the

configuration parameters and the TP/FP rate of each MadeCR

implementation and the results are shown in Figure 3. Both the

TP and FP rates of the two N−gram-based implementations

increase with N . However, the N−gram refined is more

stable against N compared with N−gram. When N = 5, the

N−gram refined reaches the highest TP rate (93.94%) while

only incurring 0.25% FP rate. For HMM and HMM refined,

as PT increases, more traces are classified to be malicious,

which increases both TP and FP. The highest TF rates of the

two HMM-based implementations are both 94.86%, which is

better than the two N−gram implementations. In comparison,

however, HMM refined raises less FP than HMM when they

produce the same TP rate. Also, it can be observed that the

refinement approach can contribute larger detection accuracy

improvement to N−gram than to HMM. This is because

HMM is a more complex model. Even without refinement,

it still has a certain ability level to extract useful information

by itself for malware detection. On the other hand, N−gram

is a simpler approach and does not have the same capability.

Hence, N−gram has to completely rely on the refinement

scheme to prune away useless information. The results shown

in Figure 3 can be used to choose proper configuration

parameters for each MadeCR implementation. In the next two

experiments, we use the N−gram refined and HMM refined

MadeCR implementations and the configurations of these two

implementations are set at the points that achieve the highest

TP rate (i.e. 93.94% and 94.86% respectively).

The second experiment focuses on the mutants generated by

the IIL mutation operator, essentially the mutants that mimic

suppression attacks. For these mutants, MadeCR can produce

96.76% TP rate using N−gram refined and 96.82% using

HMM refined.

In order to further illustrate the detection capability of

MadeCR when it is applied to real-world malware, the third

experiment generates high order mutants as testing cases by

the insertion of two or more mutations to the original program.

The real-world malware usually changes the source code at

more than one positions to make more significant changes to

the execution flow. Similarly, more mutations applied to the

program can also introduce more changes to the program’s

behaviors. In Table II, the TP rate of N−gram refined and

HMM refined in detecting mutants of different orders are

shown. The order of a mutant is defined to be the number

of mutations applied to the original program to generate the

mutant. 542 2-order mutants and 542 3-order mutants are used

as testing cases. As we can see, MadeCR can achieve a better

detection accuracy for the mutants with more than 1 mutations,

thus we believe MadeCR’s detection accuracy for real-world

malware should also be very high.

TABLE II
TRUE POSITIVE RATE VERSUS MUTATION ORDERS

Mutation order 1 2 3

N−gram refined 93.94% 98.52% 99.63%

HMM refined 94.86% 99.08% 99.81%

B. Computation Overhead

We evaluate the computation overhead of different MadeCR

implementations, and especially focus on the overhead re-

duction introduced by refinement. As shown in Table III, of

all the 97 unique functions captured in the training phase,

57 functions are extracted as security-critical functions. The

average length of traces intercepted in 22 seconds is 1683,

which is reduced to 983 after filtering out the irrelevant

functions through the refinement process. For HMM, the

number of states is 246 in basic HMM implementation, and

it reduces to 109 after refinement.
TABLE III

THE REDUCTION EFFECT OF REFINEMENT

Basic Refined Percentage reduction

of unique functions 97 57 41.42%

Average trace length 1683 983 41.59%

of states in HMM 246 109 55.70%

Figure 4 shows the average time to process one trace in the

training phase and the detection phase respectively. As we can

see, HMM takes much longer time for training while shorter

time for detection compared with N−gram. The refinement

approach can increase the efficiency of both N−gram model

and HMM. The improvement effect is larger for HMM: The

training time is reduced from 182.28 seconds to 18.38 seconds,

while detection time is reduced from 4.81 seconds to 1.10

seconds.

VI. RELATED WORK

The sequence of system calls produced by applications

has been widely used in anomaly detection analysis [7]. In

[12], Hofmeyr et al. modeled sequences of system calls using

N−gram model. Mismatches of N−grams in testing traces

compared to normal traces were used as anomaly score. In

[13], Warrender et al. proposed a HMM-based anomaly detec-

tion approach, which used the likelihood of testing sequences

generated by the learnt HMM and average state transition

probability of testing sequences as anomaly scores. In addition,

they compared the performance of the HMM-based approach

and the N−gram-based approach, and found out that the

Training Detection
10

−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

N−Gram
N−Gram refined

HMM
HMM refined

Fig. 4. Performance Evaluation

HMM-based approach gave the best accuracy on average at

high computational cost. In [21], Hao et al. analyzed traffic

causality and scalable triggering relation to detect stealthy

malware activities. In [22], Elish et al. profiled user-trigger

dependence to detect malware in Android platform. However,

none of these approaches can detect suppression attacks. We

extend their works by designing new computational methods

for security verification to detect suppression attacks.

In [8], Mutz et al. applied four models to characterize

system call arguments and to identify anomalous occurrences.

The models focused on analyzing string length, character

distribution, string structure and tokens of system call argu-

ments respectively. For each system call, an anomaly score

was calculated for the argument in question. However, the

important information of correlation relationships between

system calls were not included in their work. In [19], Maggi et

al. extended the work in [8] by building a behavioral Markov

model incorporating both arguments and sequences of system

calls. The models proposed in the two papers are not readily

applicable to analyze arguments in a CR application because

none of them can address continuous numeric values.

In [20], David Wagner and Drew Dean discovered that

ignoring security-irrelevant system calls in execution traces

can reduce the computation overhead and even increase ac-

curacy of the detection model. However, how to efficiently

filter out these certain system calls were not addressed in

their work. In our paper, we propose a practical approach

to automatically prune away the irrelevant function calls and

extract the security-critical ones.

VII. CONCLUSION & FUTURE WORK

This paper presents MadeCR, the first approach to detect

malware for CR networks by learning correlations of CR

applications’ behaviors. MadeCR monitors both control flow

and data flow during the execution of CR applications to

extract useful correlations. MadeCR is able to detect suppres-

sion attacks, which are significant threats to CR networks. To

reduce false positives and computation overhead, we propose

a new refinement approach to extract security-critical function

calls from all the intercepted function calls. Artificial mutants

are generated to test the effectiveness of MadeCR.

For future work, we will extend MadeCR from only mon-

itoring CR applications’ operation events at CR software to

multiple-layer, such as radio hardware, operating system, user

application, and network. A multi-layer detection will be more

effective to capture malware.
REFERENCES

[1] R. Falk, J. Esfahani, and M. Dillinger, “Reconfigurable radio terminals—
Threats and security objectives,” in SDR Forum Input Document, SDRF-

02-I-0056, 2002.
[2] M. Kurdziel, J. Beane, and J. Fitton, “An SCA security supplement

compliant radio architecture,” in Military Communications Conference,

MILCOM 2005. IEEE, pp. 2244–2250.
[3] W. Scott, A. Houle, and A. Martin, “Information assurance issues for an

SDR operating in a manet network,” in SDR Forum, November, 2006.
[4] T. Ulversoy, “Software defined radio: Challenges and opportunities,”

Communications Surveys & Tutorials, IEEE, vol. 12, no. 4, pp. 531–
550, 2010.

[5] J. L. Burbank, “Security in cognitive radio networks: The required
evolution in approaches to wireless network security,” in 3rd Interna-

tional Conference on Cognitive Radio Oriented Wireless Networks and

Communications, CrownCom 2008. IEEE, pp. 1–7.
[6] R. Chen, J.-M. Park, Y. T. Hou, and J. H. Reed, “Toward secure dis-

tributed spectrum sensing in cognitive radio networks,” Communications

Magazine, IEEE, vol. 46, no. 4, pp. 50–55, 2008.
[7] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.
[8] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system

call detection,” ACM Transactions on Information and System Security

(TISSEC), vol. 9, no. 1, pp. 61–93, 2006.
[9] C. Li, N. K. Jha, and A. Raghunathan, “Secure reconfiguration of

software-defined radio,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 11, no. 1, p. 10, 2012.
[10] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detec-

tion,” in Usenix Security, 1998.
[11] T. Garfinkel, M. Rosenblum et al., “A Virtual Machine Introspection

Based Architecture for Intrusion Detection.” in NDSS, vol. 3, 2003, pp.
191–206.

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151–180, 1998.

[13] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in Proceedings of the 1999 IEEE

Symposium on Security and Privacy, S&P 1999. IEEE, pp. 133–145.
[14] R. Sibson, “SLINK: an optimally efficient algorithm for the single-link

cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 1973.
[15] S. Salvador and P. Chan, “Determining the number of clusters/segments

in hierarchical clustering/segmentation algorithms,” in 16th IEEE Inter-

national Conference on Tools with Artificial Intelligence, ICTAI 2004.

IEEE, pp. 576–584.
[16] E. Alpaydin, Introduction to machine learning. MIT press, 2004.
[17] L. Rabiner, “A tutorial on hidden Markov models and selected applica-

tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[18] T. R. Newman, A. He, J. Gaeddert, B. Hilburn, T. Bose, and J. H.
Reed, “Virginia tech cognitive radio network testbed and open source
cognitive radio framework,” in 5th International Conference on Testbeds

and Research Infrastructures for the Development of Networks &

Communities and Workshops, TridentCom 2009. IEEE, pp. 1–3.
[19] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through

system call sequence and argument analysis,” IEEE Transactions on

Dependable and Secure Computing, vol. 7, no. 4, pp. 381–395.
[20] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in

Proceedings of the 2001 IEEE Symposium on Security and Privacy,

S&P 2001. IEEE, pp. 156–168.
[21] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy

malware activities with traffic causality and scalable triggering relation
discovery,” in Proceedings of the 9th ACM symposium on Information,

computer and communications security. ACM, 2014, pp. 39–50.
[22] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang, “Profiling

User-Trigger Dependence for Android Malware Detection,” Computers

& Security, 2014.

