User-Assisted Host-Based Detection of Outbound
Malware Traffic *

Huijun Xiong!, Prateek Malhotra!, Deian Stefan?, Chehai Wu?, and Danfeng Yao!

! Department of Computer Science, ,Rutgers University Piscataway, NJ 08854, USA
2 Department of Electrical Engineering, The Cooper Union, New York, NY 10003, USA
3 AppFolio, Inc. 55 Castilian Dr. Goleta, CA 93117, USA
huijun@cs.rutgers.edu, someonel@eden.rutgers.edu,
stefan@cooper.edu, wuchehai@gmail.com, danfeng@cs.rutgers.edu

Abstract. Conventional network security solutions are performed on network-
layer packets using statistical measures. These types of traffic analysis may
not catch stealthy attacks carried out by today’s malware. We aim to develop
a host-based security tool that identifies suspicious outbound network connec-
tions through analyzing the user’s surfing activities. Specifically, our solution for
Web applications predicts user’s network connections by analyzing Web con-
tent; unpredicted traffic is further investigated with the user’s help. We describe
our method and implementation as well as the experimental results in evalu-
ating its efficiency and effectiveness. We describe how our studies can be ap-
plied to detecting bot infection. In order to assess the workload of our host-based
traffic-analysis tool, we also perform a large-scale characterization study on 500
university-users’ wireless network traces for 4-month period. We study both the
statistical and temporal patterns of individuals’ web usage behaviors from col-
lected wireless network traces. Users are classified into different profiles based
on their web usage patterns. Our results show that users have regularities in their
Web activities and the expected workload of our traffic-analysis solution is low.

1 Introduction

Several studies estimate that millions of computers worldwide are infected by malware
and have become bots that are controlled by cyber criminals [9, 10, 14]. The infected
computers are coordinated and used by the attackers to launch diverse malicious and
illegal network activities, including perpetrating identity theft, sending spam (estimated
100 billion spam messages every day [25]), launching denial of service (DoS) attacks,
and committing click fraud. Malicious bots are stealthy and difficult to detect using con-
ventional anti-virus software. Botnet communications including command and control
(C & C) and attacks disturb the usual and routine traffic patterns of a user. For a good
description of the botnet structures, we refer readers to the paper by Dagon, Gu, Lee,
and Lee [6]. Malicious bot is a special type of malware, which is an umbrella term for
all malicious software such as virus, worm, rootkit, and spyware.
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Rutgers University Computing Coordination Council Pervasive Computing Initiative Grant.



Many network-wide intrusion detection and protection systems, both commercial
products or research prototypes, have been developed for monitoring network traf-
fics and report alerts if observing known suspicious attack patterns [24,26]. Similarly,
anomaly detection systems aim to detect deviations or abnormal events from historic
usage patterns [22]. However, the existing network analysis and security tools are in-
adequate in two main aspects: individualized analysis and personalized security. It is
reported that on average 3-5 percent of organizational assets are compromised by bots
and malware — even when the best and most up-to-date security software is applied [7].
Most current network trace analysis focuses on the aggregated traffic flow of the en-
tire network, e.g., network-side traffic volume, busiest hosts on the network, and bursty
periods of the organization. These types of network-wide traffic analysis do not give
insights to the usage patterns of individuals on the network.

In this paper, we describe a novel host-based anomaly detection approach based
on both traffic prediction and user participation. We call it a personalized security ap-
proach. Specifically, we implement a traffic monitoring framework that is capable of
predicting legitimate outbound network connections. Our framework intercepts net-
work traffic from the host. The connections that are observed but not predicted by the
framework may be due to malware activities on the host.

In order to further classify the unpredicted outbound connections, our approach is
to leverage the user’s personal knowledge about his or her Web activities, for exam-
ple, by prompting a window asking the user whether she initiated a connection to a
Web address. Studies found that users demonstrated regularities in their surfing pat-
terns [12]. Our characterization results presented in this paper also indicate that users
have highly repetitive network-connection patterns. Utilizing these regularities in realiz-
ing user-centric security solutions as we demonstrate in this work opens a new direction
for battling against today’s pervasive malware attacks. Many botnets successfully evade
the IRC (Internet Relay Chat protocol)-based detection by switching to HTTP-based
command and control [13, 30], as HTTP traffic is usually allowed through firewalls and
not blocked.

Therefore, our study focuses on identifying HTTP traffic of malware. Our approach
can be generalized to other application protocols. With a personalized security ap-
proach, we monitor and examine host-based traffic patterns to detect abnormal net-
work requests caused by malware. This type of investigations represents a personalized
analytical approach that can also be applied to managing the security of large orga-
nizations. We implement our traffic-monitoring framework in Python and evaluate its
efficiency and prediction effectiveness. The technical challenges involved in predicting
Web-related traffic are the diversity and flexibility of hypertexts including scripts. We
focus on parsing and analyzing static Web pages, embedded iframes and cascaded style
sheets, as well as redirected pages. Our results indicate that most traffic can be effec-
tively predicted using our code for static Web content. Legitimate connections that our
prediction misses are mainly due to JavaScript code. In an effort to reduce the number
of questions asking to the user, we also utilize a whitelisting approach.

Another contribution of this paper is a large-scale characterization study on 500-
users’ wireless network traces for four-month period. We collected wireless network
traces from a university. Our characterization work aims towards discovering the pat-



terns and properties of individuals’ network behaviors, in particular, we study both the
statistical and temporal patterns of individual host’s Web activities. (A host is uniquely
identified by its MAC address which remains consistent throughout the dataset.) Our
investigation is different from the conventional network-wide aggregated traffic analy-
sis, as we focus on the micro-scale pattern of an individual user. Our characterization
results suggest that users have low diversity in terms of daily Web sites visited — people
tend to visit a small number of Web sites regularly. This repetitiveness can be leveraged
to construct effective host-based malware detection solutions because malware-caused
deviations from the regular patterns may be identified. It also indicates that the expected
workload of our traffic-monitoring tool is low.

The rest of the paper is organized as follows. Our host-based traffic-monitoring
framework is described in Section 2. Our wireless network trace analysis is given in
Section 3. The related work is described in Section 4. Conclusions and future work are
in Section 5.

2 Outbound Malware-Traffic Detection with User Participation

In this section, we describe a traffic monitoring framework that aims to identify mal-
ware traffic by carefully analyzing user’s Web requests and content as well as involving
the user in the process of classifying traffic. Although detecting anomaly traffic with
user’s help may appear to be straightforward, the challenge here is how to encourage
user’s participation and avoid intrusiveness to user. Thus we need a precise and effi-
cient prediction mechanism. Our solution requires the minimal participation from the
user and causes no undesirable delays to the user’s surfing experience. Our study is fo-
cused on Web traffic because HTTP based malware activities such as Spyware or botnet
command and control are notorious hard to detect — most firewalls allow HTTP traffic
on port 80. Our implementation is realized in Python in Linux, but the architecture can
be realized in other programming languages and platforms as well.

Our malware attack model and security assumptions are as follows. We consider
stealthy malware that is secretly sending outbound HTTP traffic. The malware may
corrupt the browser, e.g., through malicious extensions [16]. Thus, the browser is not
assumed to be trusted. The malware may be at the application-level or kernel-level such
as rootkits which actively hide their presence from the host’s operating system. How-
ever, for kernel-level malware, we assume that components in our detection framework
along with its files are not corrupted by the malware. This last assumption is reasonable,
as the integrity of our framework can be ensured using trusted computing infrastructure
such as Trusted Platform Module (TPM) [28, 29] that are available on most commod-
ity PCs through a standard attestation procedure [20]. The integration of TPM into our
framework is not described in this paper. Our study addresses client-side security, and
complements any server-side security solutions.

2.1 System Architecture and Algorithm for Traffic Monitoring

In order to identify unauthorized HTTP connections possibly due to malware, our ap-
proach is to monitor and analyze outbound network requests. Blocking outbound mal-
ware packets can effectively render malware useless. Thus, we do not need to examine



all incoming traffic, which makes our solution all the more efficient. Our solution can
effectively eliminate a wide spectrum of harmful malware activities, e.g., identity theft,
spam, DDoS attacks, click fraud, or botnet command & control messages. Malware is
unable to deliver stolen personal data to the outside. Our framework has the following
three main components:

— Sniffer: interception and filtering all outbound HTTP requests. Pending outbound
HTTP requests are put on a list waiting for approval to execute. Sniffing outbound
HTTP requests can be realized using existing network libraries such as 1ibpcap
library in Python.

— Predictor: the prediction of legitimate outbound HTTP requests based on the user’s
activities and parsing of Web content retrieved out of band (Section 2.2). Observed-
yet-unpredicted connections will be prompted to the user for further classification.
An important requirement to the predictor is to reduce the number of questions for
the user while maintaining the prediction accuracy.

— User interface: pop-up windows where a user can indicate whether or not observed
network attempts are initialized by her (Section 2.3). The interface needs to be easy
to use by nontechnical-savvy users. A screenshot of our user interface is shown in
Figure 3.

In the next few sections, we will describe the technical details involved in realizing
our predictor as well as our experimental evaluation on the framework.

2.2 Analysis on Web Contents

In HTTP protocols, each object is retrieved in a separate HTTP request. For example, if
a Web page has 10 images, then the browser issues 11 separate HTTP requests sequen-
tially to the Web server. For persistent HTTP connections, all 11 HTTP requests may be
sent in one TCP connection between the server and the client, whereas for nonpersis-
tent HTTP connection, each HTTP request requires a separate TCP connection. Being
persistent or not does not affect the deployment of our solution.

To predict legitimate Web traffic, a straightforward solution is that each time an
outbound HTTP request is observed, we ask the user whether she is responsible for that
connection. However, this simple approach may create many questions and be quite
intrusive to users due to the pervasive third-party content on the Web — advertisements
or (multimedia) content hosted by content delivery providers instead of the main web
server. Third-party content (e.g., from amakai.comor yimg. com) is retrieved from
URLSs that may seem arbitrary to the user, i.e., bearing no similarity to the main website
URL (e.g., yahoo.com), impacting user’s classification decisions. This problem is
solved by us with out-of-band retrieval and analysis of Web content (explained below).
The workflow for identifying suspicious outbound traffic in our solution is as follows.

1. The predictor fetches the requested Web page independent of the browser (e.g.,
using wget), which we call out-of-band retrieval. It parses the retrieved content
to whitelist the outbound HTTP requests for fetching referenced objects (e.g., im-
ages). The predictor repeats this step until there are no referenced objects. The
whitelist is stored in memory, and is domain-based to improve our prediction effi-
ciency.
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Fig. 1. Workflow in our traffic-monitoring framework.

2. The sniffer intercepts all attempted outbound HTTP connections from the host (in-
cluding those from applications other than the browser), which are put into a wait-
ing list. The HTTP requests that appear on the predictor’s whitelist are permitted.
For example, a HTTP GET request to fetch object yimg.com/images/tree.
jpg is allowed if yimg. com is on the whitelist.

3. For the pending connections that cannot be predicted, we prompt a small window to
the user asking whether she has initialized that request. The connection is allowed
if the user enters Yes, and denied otherwise.

A schematic drawing of the detailed workflow regarding our traffic prediction is
shown in Figure 1 and explained as follows. Figure 2 gives an example of the ob-
jects/connections predicted as a result of a user visiting www.cs.rutgers.edu.

1. The user visits a target website W in Step 1 and 2. This initial request to URL W
is intercepted by 1ibpcap library in Step 3.

2. In Step 4, our predictor checks to see if the domain of W is whitelisted or not. If
the domain is blacklisted, then the user is given a warning. If it is whitelisted, the
request is allowed. Otherwise, we prompt the user to confirm URL W as shown
in Figure 3 in Step 5. User-permitted domains are put onto the whitelist for future
reference.

3. In Step 6, the object H-TTPRedirectHandler is for keeping track of redirected
requests by putting a listener to each executed outbound HTTP request. Therefore,
our predictor is capable of tracking redirections of any arbitrary depth. We note that
our analysis including the sending and processing of HTTP requests is outside and
independent of the browser, which we call out-of-band analysis.

4. The core parsing and prediction steps are Step 7 and 8 (8a, 8b, and 8c). Content
retrieved by the out-of-band request is parsed by the HTML5Lib Python library
to predict additional HTTP requests for objects therein. For example, in Figure 2
.CSS file may contain additional image objects that need to be requested. This
process loops (indicated by Step 8c) until there is no more object to retrieve.



5. Unique domain names of predicted connections are put on the whitelist in Step 9.
Observed actual connections that do not appear on the whitelist are prompted to
the user for classification in Step 10, the results of which are used to update the
white/black lists in Step 11.

In our current implementation, our analysis is in parallel with the browser and takes
place in a postmortem fashion where we aim to identify suspicious URL connections
and alert to the user. Therefore, it causes no delay in the user’s actual surfing experience.
An alternative solution is to suspend all outbound HTTP requests until they are either
predicted by our tool or explicitly approved by the user. This approach may cause delays
in users’ Web usage and is not adopted by us.
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Fig. 2. The illustration of a tree capturing the hierarchical invoking sequences among (automatic)
outbound HTTP requests as a result of visiting www.cs.rutgers.edu.

Because our analysis is completely independent of the browser, it is robust against
corrupted browser. For example, a browser with malicious extensions on the client may
secretly exporting users’ personal data to the attacker (e.g., spyware); our solution can
detect the stealthy traffic. Our parser utilizes the HTML5LIB Python module. This mod-
ule provides a robust ability to parse through HTML/XML and XHTML code including
those with malformed markup code. The module can automatically fix bad markup and
return the parsed data in several formats including a tree format. After we download
and parse through an HTML file, our predictor goes through every node in the tree
using a built-in tree-traversal mechanism from the HTMLS5Iib module to identify tags
with the attribute SRC. HTML tag with the attribute SRC initiates a network request to
fetch the contents of the source destination. The tags include IMG, SCRIPT, IFRAME,



433 Applications Places system @ (2 @ . & @ Wi satAug 1, 2:03AM | Live session user (&
@ Google - Mozilla Firefox [=)l=]x]
File Edit View History Bookmarks Tools Help

@ A % [$]httpswww.google.com/ v| @~ a

[ Most Visited @b Getting Started [ Latest Headlines

Web Images Videos Maps News Shopping Gmail morev iGoogle | Sign in

g cimon ‘Your computer is contacting www.milworm.com

555 pid you just visit that website?

| @x || ¢

rograms - Business Solutions|yAbout Google

©2009- privacy

Done
= ubuntu@ubuntu: ~/res... || @ Google - Mozilla Firefox

&l

Fig. 3. A screenshot of our user interface.

FRAME, and INPUT, as well as tags AUDIO, EMBED, VIDEO in HTMLS5. The content
found within style tags are parsed through for any URL includes. This procedure
predicts @ import requests and image includes for backgrounds or behavior scripts.
Last but not the least, attribute HREF from link tags is parsed, as it usually contains the
include for CSS files. In essence, we recursively identify objects referred in retrieved
WebPages to estimate the (separate) HTTP connections required to fetch all of them.
We note that our solution does not require crawling hyperlinks and thus is quite effi-
cient. Advanced Web contents such as Applets or AJAX (asynchronous JavaScript and
XML) requests through XMLHt tpRequest typically concern objects residing on the
same domain as their parent page, and thus are safely disregarded by us.

2.3 Experimental Evaluation

In this section, we describe experimental evaluation on our solution. All the experiments
were executed on a HP Pavilion dv9500t laptop computer that has 4GB memory, an
Intel Core 2 Duo 2.2GHz CPU with ArchLinux X86_64.

In Table 1, we evaluate our program on several websites to assess its ability to pre-
dict legitimate outbound HTTP connections. For most websites studied, our program is
able to predict most of the actual requests. For websites with the heavy use of JavaScript
code such as digg.com, the prediction percentage is relatively low. Improving our
prediction on JavaScript-generated requests requires interpreting JavaScript code along
with the DOM object out of the browser. This task is subject to our future study.

We perform extensive experiments to evaluate the efficiency of the predictor mech-
anism in our implementation. The prediction is performed in parallel with the actual
Web requests by the browser, and thus its execution has little impact on the browser’s
responsiveness to the user. Nevertheless, fast prediction is desirable because of the
early detection of suspicious outbound HTTP requests. We evaluate four websites
with distinct characteristics and our results shown in Table 2 blogs.zdnet .com
is a very dynamic and rich website, which usually has new connections on every



Table 1. Evaluation on the prediction ability of outbound HTTP requests. Req. stands for re-
quests. Dom. stands for domains.

URL Actual Req.|Predicted Req.|% Predicted| Actual Dom. |Predicted Dom.
yahoo.com 37 67 92% 7 4
eset.com 51 67 94% 5 2
google.com 7 3 43% 3 2
cs.rutgers.edu 34 39 100% 1 1
digg.com 111 47 42% 21 7
codeigniter.com 29 177 100% 1 6

Table 2. Evaluation of prediction efficiency on four websites with full (F.) or lite (L.) predictors.
Results are averaged from three runs. The time is shown in seconds.

[blogs .zdnet .comlwww.cs.rutgers.edu|yahoo.com|google.com

Actual Req. 228 67 40 3
Network time (F.) 23.50 3.54 1.86 0.22
Parsing time (F.) 2.19 0.28 0.09 0.03
Total (F.) 30.99 4.035 2.87 0.28
Network time (L.) 3.75 0.22 0.56 0.19
Parsing time (L.) 0.83 0.27 0.09 0.03
Total (L.) 12.55 0.68 1.39 0.24

page load. yahoo.com provides less dynamic content than blogs.zdnet .com —
this Web page stays consistent over a short period of time (e.g., a couple of days).
www.Cs.rutgers.edu is a static and medium-sized website. google.com is a
very light and mostly static website. It only uses JavaScript code for the pull-down
menu at the top.

We test two versions of our predictor implementation: a full predictor and a lite
predictor. The full predictor is as described in Section 2.2, where each requested object
is analyzed in the same fashion. In the lite predictor, images and JavaScript objects are
not requested and processed, i.e., Steps 6 through 8c are skipped if the request is to
fetech an image or JavaScript object. The lite version is effective for most websites and
may significantly improve our prediction efficiency. For yahoo.com and www.cs.
rutgers.edu, the lite predictor is faster than the full predictor, in particular for the
more dynamic pages. For simple static page like google . com, the two versions do not
differ much as expected. Forblogs. zdnet . com, prediction time goes down with the
lite predictor. However, some unique domains are not discovered in the process: certain
objects are not found (404) or being redirected (300); these cases are not pursued by
the lite predictor. Our experimental results indicate that both the full and lite versions
of predictors perform reasonably well for typical websites on a personal computer.



3 Analysis on University Wireless Network Traces

Our solution provides a real-time suspicious out-bound traffic discovery mechanism.
In detection phrase, we need user’s participation to classify suspicious traffic into ma-
licious or good traffic. In order to assess user’s workload of our host-based traffic-
analysis tool, we carry out a characterization study on 500 university-users’ wireless
network traces for 4-month period. We study both statistical and temporal patterns of
individuals’ Web usage behaviors from collected wireless network traces. Unlike pat-
tern recognition based detection mechanism, we use these patterns to gain an insight in
user’s network activity, which implies the user’s workload in using our system.

We run several filters on the original data. First, we remove the users whose total
traffic volume is lower than 1 MB, which effectively remove the users with failed login
and temporary users. Second, we only keep the outgoing and incoming TCP traffic with
destination or source port 80, in order to filter out non-HTTP connections and exclude
data from peer-to-peer software. Many HTTP-based P2P applications run on high port
numbers. We find that there are many invalid MAC addresses in our data. We wrote a
program to automatically verify the validity of a MAC address by comparing it with
the published prefixes of authorized network interface card manufactures. Unmatched
MAC addresses are notified and their corresponding traffic is removed.

In what follows, we use the words host and user interchangeably, as the hosts that
connect to the wireless network are virtually all personal laptops.

Volume of Distinct IP Addresses Our overall analysis methodology is to explore and
characterize network activities belonging to individual hosts. We compute and catego-
rize each host’s daily web traffic volume. We choose the top 500 users represented by
distinct local MAC addresses that have the highest number active days. In an inactive
day, the host has zero HTTP traffic with port 80. In Figure 4 (left), hosts are categorized
by their daily numbers of IP addresses visited. Y-axis denotes the number of users who
are in a category represented by the values in the square bracket. The majorities of users
out of the 500 studied only visited a small number of servers and have low diversity in
their daily Web traffic. On the other hand, a few users are extremely active and visit a
large number of distinct IP addresses every day. On average, 278 hosts contacted less
than 50 distinct IP addresses daily. Note that duplicate HTTP connections are counted
only once, thus automatic refresh or reload operations by Web servers do not artificially
increase the count of IP addresses.

Temporal Analysis Of Individual Web Usage We analyze how many new IP ad-
dresses and old IP addresses that a host visits each day. If an IP address visited by a
host exists in the previous surfing history, then it is labeled as an old IP, otherwise,
a new IP of that day. The surfing history of a user is initialized to be empty on day
one, i.e., H; = (. Thus, all traffic on that day is new. At the beginning of an active
day i, the surfing history is concatenated with day ¢ — 1’s new IP set new;_1, i.e.,
H; = H;,_1 Unew;_1. Thus, an IP address at day ¢ is new only with respect to a user’s
surfing history up to day i. We observe that most hosts visit fewer numbers of new IP
addresses than old IP addresses each day, indicating that most nodes are consistent with
their surfing history. In Figure 4 (right), X-axis is the index of each user, Y-axis is daily
number of IP addresses that visited by a user, the solid blue line is daily number of old
IP addresses, and the dotted red one is the daily number of new IP addresses. We select
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the most active 50 hosts to show in this analysis. For most users in Figure 4, the num-
ber of new IP addresses grows with the number of old IP addresses. An overwhelming
majority of hosts visited many more old IP addresses than new IP addresses on active
days.
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Fig. 5. Percentage of daily old IP addresses visited by two hosts, respectively. Both hosts have 55
active days.

We show the analysis results on two specific hosts in Figure 5, where Y-axis denotes
the percentage of daily old IP addresses visited by a host and X-axis denotes the index of
active days. For each day, the percentage is computed as the number of old IP addresses
divided by the number of all IP addresses visited by the host. Inactive days are not
included in the analysis. Both hosts visited significantly more old IP addresses than new
ones each day. Both users demonstrate repetitive patterns in their surfing history. As the
volume of new IP addresses is significantly lower than that of old IP addresses, the



Table 3. Numbers of days during which two hosts visit a certain percentage of old IP addresses,
respectively. Total numbers of active days are 122 and 118, respectively.

Percentage of Old IP addresses Visited| Host 1 ‘ Host 2 ‘

100% 59 days |57 days
> 90% 80 days |79 days
> 80% 100 days|95 days

workload for analysis and monitoring would be low. For our host-based bot detection
approach described in Section 2, we aim to focus on analyzing new IP addresses or
URLSs visited by a host.

We also identify the two active hosts in our dataset and find that both hosts have
a high degree of repetitiveness in the IP addresses visited. In Table 3, we count the
numbers of days during which two hosts visit a certain percentage of old IP addresses,
respectively. For each active day of a host, the percentage is computed as the number of
old IP addresses visited divided by the total IP addresses visited during that day.
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IP addresses in (a) and new IP addresses in (b), respectively. 500 hosts are plotted. Each dot
represents a user.

Profiling Visit Patterns Of Individual Hosts The degree of activity of a host can
be represented by the number of total and new IP addresses visited daily or the number
of active days during the 4-month long period. Intuitively, a user who surfs on Internet
regularly tends to be more proficient in using the web and visit a diverse and large
number of IP addresses. In an effort to investigating the correlation between the two
metrics, we plot the number of daily visited IP addresses against the number of active
days of a user in Figure 6. We study the 500 most active hosts whose numbers of active
days range from 10 to 130 days. In Figure 6, X-axis in each graph is the number of
active days; Y-axis is the daily number of the total IP addresses in (a) and new IP



addresses in (b), respectively. We find that for some hosts the number of IP addresses
visited grows with the number of active days, which is consistent with our intuition. The
area close to the origin is dense with points in Figure 6 indicating that the majority of
users studied have limited HTTP-based network activities both in terms of active days
and the volume of distinct remote IP addresses visited. We further draw a 3-D plot with
500 hosts according to their (1) number of active days (2) daily IP addresses visited and
(3) daily new IP addresses visited. The details can be found in technical report [32].

Summary on wireless network traces The number of distinct IP addresses vis-
ited by a host is most likely to be higher than the actual number of websites visited.
A website refers to the top-level domain name, e.g., google.com, yahoo.com,
amazon.com. There are several reasons. (1) Many popular servers have mul-
tiple IP addresses for load-balancing and fault-tolerance purposes. For example,
066.102.001.166 and 074.125.067.118 are among the several google.com servers.
They are counted as two different IP addresses in our analysis. (2) Many websites heav-
ily use third-party content providers for multimedia contents or advertisements. For
example, when www . cnn. com is loaded, several content providers are contacted. (3)
Dynamic IP addresses due to DHCP cause a single (remote) host to have distinct IP
addresses at different time. More fine-grained data collection and analysis on the URLs
and websites visited by the users are subject to our future study. We note that our anal-
ysis is based on distinct IP addresses visited as opposed to URLs, due to the limitation
of our dataset. As a Web server typically hosts many Web pages, the actual number of
URLSs visited by the user may differ from the number of IP addresses.

4 Related Work

Our proposed personalized security approach is different from existing anomaly detec-
tion techniques [3,22]. Personalized security aims at exploring individuals’ and per-
sonal usage patterns for the detection purpose, whereas conventional anomaly detec-
tion methods construct generic solutions for users. In addition, we focus on detect-
ing internal malware abuse and threats, as opposed to preventing break-ins coming
from outside in the conventional settings. Security-oriented traffic analysis has caught
much attention from both the network and security communities, including malware or
botnet characterization [8,21,23,31] and privacy-preserving routing and packet trace
anonymization [17-19]. Our work differs from them in that i) we analyze the statis-
tical and temporal patterns of individuals’ application-layer Web usage (as opposed
to low-level network packets); and ii) our analysis is user-centric by leveraging user’s
personal knowledge about her own surfing activities. To that end, our solution aims to
address the usability, in particular nonintrusiveness, of the host-based malware detec-
tion solutions. Our tool is complementary to the existing network-level or program-level
malware identification solutions.

Analyzing and characterizing organizational wireless network traces have tradition-
ally been studied for maintaining the stability and availability of network resources [4].
Several studies have been performed on university campus wireless network traces [1,
11, 15,27]. Researchers in Stanford University [27] studied a 12-week trace of their
local-area wireless network in Computer Science Department building with attempt to



find out the peak throughput rates and the cause of the peaks. Kotz and Essien [15]
carried out a similar study with a significantly larger and broader population. They
found out that network backup and file-sharing traffic contributed an unexpectedly large
amount to the overall traffic, which was also found in [11].

Authors in the paper [1,2] paid more attention on user behavior in the wireless
network, but these behavior studies served as parameters for network performance opti-
mization. For example, authors in [1] pointed out the load of each access point was de-
termined mostly by individual user behaviors. In [2], it was found that the data-transfer
rates of users follow a power law distribution. Power-law distributions were also found
in certain characteristics of WWW, such as the distributions of document sizes and user
requests for documents [5]. In comparison, our study on user behaviors in local wire-
less network differs from aforementioned studies. As opposed to optimizing network
or server performance, we focus on analyzing users’ individual and temporal behavior
patterns in their wireless Web traffic, which is motivated by the need for personalized
security. Policies in firewalls are typically based on port numbers and IP addresses.
In contrast, we provide much more fine-grained inspection as we examine each HTTP
connection intercepted on the network interface.

5 Conclusions and Future Work

In this paper, we proposed a novel host-based security tool that identifies suspicious out-
bound network requests with user’s participation. Specifically, we described a personal-
ized security approach and a simple-yet-effective host-based network security solution
that identifies abnormal outbound HTTP requests based on out-of-band (i.e., browser-
independent) prediction and user-assisted classification. We also described our results
on analyzing a large-scale wireless network dataset that involves more than 500 users
over 4-month period. We analyzed the individual usage patterns of users in an organiza-
tion in order to assess the workload of our host-based malware detection solution. Our
characterization analysis on individuals’ surfing patterns is useful beyond the specific
malware-detection problem studied, as it provides insights to how individual surfing-
behavior patterns may be leveraged for improved web services.

For future work, we plan to carry out user studies to evaluate humans’ traffic recog-
nition abilities. The hypothesis that we aim to evaluate in the user study is that a user
knows the websites she is currently visiting and thus can recognize malware-related
traffic to unfamiliar URLs. In a user study, each participant will be asked to freely
surf online for 10 to 20 minutes, during which we will randomly access a list of arbi-
trary (bot) servers, i.e., inject malware traffic to test whether a user can recognize it.
For unpredicted outbound HTTP requests including the injected ones, we will prompt
a window (as in Figure 3) asking whether or not the user just visited the URL. From
users’ responses, we will compute false positive and false negative rates of their perfor-
mance. Here, a false positive result will indicate that the user misclassified legitimate
user-initiated traffic as malware HTTP requests. A false negative result, conversely, will
indicate that the participant has misclassified bot URLs for their own traffic. With our
comprehensive traffic prediction mechanism described in this paper, we expect this se-
curity tool to be nonintrusive to users.



In addition, we will investigate techniques to include personalized semantic analy-

sis of surfing records and novel clustering methods for identifying outliers and suspi-
cious traffic. This study will first extract surfing tastes of individuals and then detect
suspicious Web requests whose content is inconsistent with the user’s previous surf-
ing history. We also plan to construct more advanced pattern-recognition techniques on
individuals’ usages.
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