

Prioritizing Data Flows and Sinks for App Security Transformation

Journal Pre-proof

Prioritizing Data Flows and Sinks for App Security Transformation

Ke Tian, Gang Tan, Barbara G. Ryder, Danfeng (Daphne) Yao

PII: S0167-4048(18)30638-2
DOI: https://doi.org/10.1016/j.cose.2020.101750
Reference: COSE 101750

To appear in: Computers & Security

Received date: 5 June 2018
Revised date: 1 September 2019
Accepted date: 6 February 2020

Please cite this article as: Ke Tian, Gang Tan, Barbara G. Ryder, Danfeng (Daphne) Yao, Prioritiz-
ing Data Flows and Sinks for App Security Transformation, Computers & Security (2020), doi:
https://doi.org/10.1016/j.cose.2020.101750

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2020.101750
https://doi.org/10.1016/j.cose.2020.101750

1

Prioritizing Data Flows and Sinks for App
Security Transformation

Ke Tian, Gang Tan, Barbara G. Ryder, and Danfeng (Daphne) Yao, Member, IEEE

Abstract—There have been extensive investigations on identifying sensitive data flows in Android apps for detecting malicious
behaviors. Typical real world apps have a large number of sensitive flows and sinks. Thus, security analysts need to prioritize these
flows and data sinks according to their risks, i.e., flow ranking and sink ranking. In this paper, we present an efficient graph-algorithm
based risk metric for prioritizing risky flows and sinks in Android grayware apps. The new risk metric is quantitative and can differentiate
the sensitivities of flows and sinks in an app. In the experiments, our risk prioritization produces orderings that are highly consistent
with manual inspection. To enable post-detection security enforcement of sensitive sinks, we also present an automatic rewriting
framework that utilizes the above prioritization technique. Our rewriting strategies are more feasible than the state-of-art solutions by
supporting flow- and sink-based rewriting. We implement our prototype as ReDroid. ReDroid is designed for security analysts who
manage organizational app repositories and customize third-party apps to satisfy organization imposed security requirements. We use
ReDroid to rewrite both benchmark apps and real world grayware.

Index Terms—Android Security, Application Rewriting, Sink Prioritization, Program Analysis, Machine Learning, Data-Flow Analysis.

F

1 Introduction
The research on mobile app security has been consistently
focused on the problem of how to differentiate malicious
apps from benign apps. Static data-flow analysis has been
widely used for screening Android apps for malicious code
or behavioral patterns (e.g., [17], [22], [23], [29]). In addition,
the use of machine-learning methods enables automatic
malware recognition based on multiple data-flow features
(e.g., [5], [38]).

These solutions are useful for security analysts who
manage public app marketplaces or organizational app
repositories. An organizational app repository is a private app
sharing platform within an organization, the security of
apps on which is regulated and approved by the organi-
zation based on its security policies and restrictions. For
example, the organization may be a government agency
where employees with certain security clearance levels are
required to install apps from the specified repository to their
work phones. The organization may also be a company,
where employees possessing highly sensitive proprietary
information and trade secrets are required to install apps
compliant with the company’s IT security policies.

• K. Tian is with the Department of Computer Science, Virginia Tech,
Blacksburg, VA, 24060.
E-mail: {ketian}@cs.vt.edu

• T. Gan is with the Department of Computer Science and Engineering,
Penn State University, University Park, PA 16802.
E-mail: gtan@cse.psu.edu

• B. Ryder and D. Yao are with the Department of Computer Science,
Virginia Tech, Blacksburg, VA, 24060.
E-mail: {ryder, danfeng}@cs.vt.edu

A preliminary version of the work appeared in the proceedings of workshop on
Forming an Ecosystem Around Software Transformation (FEAST), collocated
with the ACM Conference on Computer and Communications Security (CCS).
Dallas, TX. Nov. 2017. [37]

In these scenarios, a security analyst is often faced with a
new type of apps, besides malware and benign apps. These
apps are mostly benign, but with undesirable behaviors
that are incompatible with the organization’s policies. Such
apps or app libraries may be from trustworthy companies
or developers, and may have passed standard conventional
screenings. However, the app contains potentially sensitive
data flows that are incompatible with the organization’s
policies. As requesting developers to change their code is
oftentimes infeasible, current practices are to either reject the
app or reluctantly accept it, despite its undesirable security
behaviors. A similar dilemma is faced by individual users
as well. For example, a privacy-conscious user may wish
to dynamically restrict an app’s location sharing at runtime
according to her specific preferences.

Our work is motivated by this new need of security
customization of apps. A general-purpose framework for
customizing the security of off-the-shelf apps would be
extremely useful and timely. Such a framework involves
several key operations: (1) [Prioritization] to identify prob-
lematic code regions in the original app, (2) [Modification]
to modify the code and repackage the app. In addition, post-
rewrite monitoring may be needed, if the access or shar-
ing of sensitive data is determined dynamically. We have
made substantial progress towards these goals. We report
several new techniques, including quantitative risk metrics
for ranking sensitive data flows and sinks in Android apps.

Our major contribution is to propose a new priori-
tization algorithm to rank sensitive sinks for apps. Our
approach is capable to capture internal data dependencies
among sensitive sinks and provide sinks with evidence-
based quantification of risks. The algorithm consists of two
major components: a taint-flow based sensitivity aggrega-
tion and a machine learning based sensitivity quantification.
Comparing with existing solutions that only aim to detect
taint flows [6] of sensitive sinks, our goal is to enable both

2

sensitivity aggregation and quantitative ranking of sensitive
sinks.

To achieve our goal, we first define a quantitative risk
metric for sensitive flows and sinks in a taint-flow. For
sensitive sinks, the metric summarizes all the sensitive flows
that a sink is involved in. We design an efficient graph
algorithm that computes the risks of all sensitive sinks in
time linear to the size of a directed taint-flow graph G, i.e.,
O(|E|), where |E| is the number of edges in G. (A taint-flow
graph is a specialized data-flow graph that only contains
data flows originated from predefined sensitive sources and
leading to predefined sensitive sinks.) The risk value of a
sink is calculated based on all the sensitive API calls made
on the sensitive data flows leading to a sink. A sink may be
associated with multiple such sensitive flows.

In order to rank risky sinks, we map sensitive API calls to
quantitative risk values, using a maximum likelihood esti-
mation approach through parameterizing machine-learning
classifiers. These classifiers are trained with permission-
based features and a labeled dataset. Then, we use the risk
metric to identify and rewrite the sinks associated with the
riskiest data flows without reducing the app’s functionality.

Our work also moves a step towards sink-specific rewrit-
ing by extending app rewriting solutions for Android.
Rewriting is regarded as post-detection mitigation to en-
force security policies. Existing solutions are specific to
certain code issues and are not designed for our secu-
rity customization scenarios [14], [21]. Due to the specific
rewriting needs, the target locations to be rewritten are
relatively straightforward to identify. Most of the existing
solutions use direct parsing for code-region identification.
Yet, oftentimes it is unclear which regions of the code need
to be modified in order to achieve the best risk reduc-
tion. If additional post-rewrite monitoring is required at
runtime, then modifying every single sensitive flow or sink
may substantially slow down the performance. Since the
rewriting process at the binary or bytecode level is error-
prone, minimizing the impact of rewriting on the original
code structure is also important.

We demonstrate a practical Jimple-level code rewriting
technique that can verify and terminate the riskiest sink at
runtime. For the Android-specific inter-app inter-component
communication (ICC) mechanism, we propose ICC relay to
redirect an intent. We replace the original intent with a
relay intent; the relay intent then redirects the potentially
dangerous data flow to an external trusted app for runtime
security policy enforcement. The communication between
the modified app and the trusted app is via explicit-intent
based ICC. The trusted app is where data owner may
implement customized security policies.

The technical contributions of our work are summarized
as follows.

1) We present a general sink-ranking approach that is
useful for prioritizing sensitive data flows in Android
apps. Specifically, our approach relies on two main
technical enablers. The one enabler is a quantitative risk
metric for sensitive flows and sinks in taint-flow graphs
that is based on machine learning techniques.
The other enabler is an efficient O(|E|)-time taint-graph
based risk-propagation algorithm that ensures the max-

imum coverage of all sensitive sources and internal
nodes of a sink.

2) We implement a proof-of-concept prototype called Re-
Droid 1. We use ReDroid to demonstrate the usage of
rewriting in defending ICC hijacking and privacy leak
vulnerabilities. Our rewriting supports flow-based and
sink-based rewriting, which is more feasible beyond the
state-of-art rewriting solutions.

3) We have performed an extensive experimental evalua-
tion on the validity of permission risks and sink rank-
ings. Our manual inspection indicates that top risky
sinks found by ReDroid are consistent with external re-
ports. We compare various permission-based and non-
permission-based risk metrics, in terms of their abilities
to identify top risky sinks.

4) We demonstrate the feasibility and effectiveness of
both inter-app ICC relay and logging-based rewriting
techniques in testing DroidBench and ICC-bench apps.
We also successfully customized recently released
grayware. The customized app enables one to monitor
runtime activities involving Java reflection, dynamic
code loading, and URL strings.

Our ranking algorithm supports both sink ranking and
flow ranking 2. However, due to the interdependencies of
flows, cutting a flow in the middle may cause much more
runtime errors than removing the flow’s end-point sink. In
addition, a sink aggregates multiple flows, making them
riskier than a single flow. Thus, we focus on rewriting sinks.

Comparing with the previous conference version [37],
we substantially extended the paper from 7 pages to 13
pages by adding new content, and providing details of our
approach and evaluation.

We summarize the differences in three aspects: 1) we
conducted new experiments that evaluated and compared
the effectiveness of our ranking and rewriting approach
(Section 4.1-4.6). The experimental results validate the ef-
ficiency of our approach (Section 4.2 and 4.3). We also
provided case studies on the ability to prioritizing sensitive
flows (Section 4.3) and machine learning accuracy for trans-
forming permission strings into risk values (Section 4.5). 2)
We incorporated the pseudocode to describe our algorithms
on computing risk scores of sinks from the risk propagation
(Algorithm 1). We added new definitions (Definition 2 and
3 for aggregation notations) to elaborate our algorithm in
details. 3) We substantially extended most part of the paper
to improve its readability, added new related work, and
provided details of our approach and implementation.

2 Overview
Before we give the overview of our approach in Section 2.2,
we first show a few examples to motivate the needs for
ranking sensitive data flows and rewriting apps for security.

We target data leaks in our current threat model, specif-
ically data flows in an app that may result in the disclosure
and exfiltration of sensitive data. With proper source-sink
definitions, the proposed sink-ranking and rewriting-based

1. ReDroid is short for Rewriting AnDroid apps
2. Flow ranking is a special case of sink ranking in our Algorithm 1.

3

monitoring framework can be extended to support other
security applications, which is discussed in Section 3.4.

2.1 Motivation and Design Choices
Security Usage of App Rewriting. Table 1 summarizes the
security applications with our rewriting. Our rewriting can
identify multiple vulnerabilities such as ICC hijacking and
privacy leak. We rewrite apps to enforce different security
policies, these security policies help a security analyst effi-
ciently detect vulnerable activities and offer security mitiga-
tions. Our rewriting framework can prevent vulnerabilities
in stand-alone apps and vulnerabilities in app communica-
tion channels. We elaborate our rewriting feasibility with
more details in Section 4.1.

We envision two types of use scenarios for app rewriting
tools as follows. Both scenarios are possible. However, be-
fore rewriting tools can be made fully reliable, automated,
and usable, the second use scenario is unlikely.

1) Used by security analysts who manage app repositories.
Security analysts retrofit off-the-shelf apps for organi-
zational app repositories to make them comply with
organizational security policies. Employees download
retrofitted apps into their regulated work phones.

2) Used by individuals to customize privacy. Users have spe-
cific data-access preferences that cannot be satisfied by
an off-the-shelf app and choose to retrofit the app.

Flow and Sink Prioritizing. Apps typically have a large
number of sensitive flows. In order to show the importance
of ranking these flows, we conduct an experiment on 100
apps that are randomly selected from Android Malware
Genome Database [45]. We use FlowDroid [6] for static pro-
gram analysis and SUSI [33] for labeling sensitive sources
and sinks. Our sensitive source and sink definitions follow
SUSI, where sources are calls to read sensitive data and
sinks are calls that can leak sensitive data. Figure 1a shows
the distribution of the number of sensitive flows. Figure 1b
presents the distribution of the number of source and sink
nodes. A single app can contain more than 20 distinct sinks.
A data flow is sensitive, if any node on its path is labeled
sensitive. These statistics indicate the complexity of sensitive
flows and sinks in a single app. An appropriate prioritizing
mechanism would help a security analyst to facilitate the
app monitoring, e.g., identifying most sensitive flows and
sinks. The motivating experiment indicates the need for
prioritizing sensitive flows and sensitive sinks according to
systematic quantitative metrics.

Flow-based Sink Ranking vs. Flow Ranking. The risk
of a sink should be associated with all the sensitive paths
flowing into that sink, which usually involves many nodes
besides the sink itself. A sink may be reachable by multiple
sensitive flows. Therefore, the risk factors from all these
flows need to be aggregated in order to completely reflect the
risk of a sink. Our sink ranking is computed on flows, i.e.,
flow-based sink ranking. In comparison, computing the risk of
a single flow is simpler. It can serve as a basic building block
for computing the risk of a sink. Flow ranking is a special
case of our sink ranking algorithm. However, flow ranking
should not be used to guide the rewriting, as it may provide
an incomplete risk profile of the code.

Type Vulnerability Our Framework
Addresses

Inter-app Com. ICC hijacking X
(IAC) Collusion X

Stand-alone Privacy Leak X
App Reflection X

String Obfuscation X
Dynamic Code Loading X

TABLE 1: The vulnerabilities that can be identified by our
rewriting framework. Our rewriting framework can identify
vulnerabilities in stand-alone apps and vulnerabilities in
app communication channels.

Sink Rewriting vs. Flow Rewriting. Once the most
sensitive sink is identified, rewriting that end-point region
likely produces a minimal impact on the app’s functionality.
Revising a flow (e.g., cutting an internal edge) requires
substantial more engineering efforts, due to the interdepen-
dency of flows. However, in some scenarios, flow rewriting
may be more fine-grained than sink rewriting. For example,
a sink may be associated with n flows, only one of which
is sensitive and needs to be modified. The other n − 1
flows do not involve sensitive data or operations and can
be left intact. Our logging based rewriting supports both
flow- and sink-based rewriting. This strategy can log and
inspect each node along a data flow. In contrast, the ICC
relay is more focusing on sinks (e.g., startActivity) with ICC
vulnerabilities.

Sensitive API-based Risk vs. Permission-based Risk.
These two risk metrics are equivalent in our model. We map
the sensitive API calls of a data-flow path into their corre-
sponding Android permissions, as shown in Figure 2. For
example, getLocation API call is mapped to LOCATION
permission. We then quantify permissions’ risks through
statistical methods. Our risk-computation approach can be
extended to support other types of risk definitions (e.g., by
leveraging data-flow features in Android malware classi-
fiers such as [5], [17]).

A Toy Example. In Figure 2, we use a toy taint-flow
graph (simplified from GoldDream) to illustrate several
possible sink-ranking methods and how they impact secu-
rity. The figure contains two sensitive source (s1 and s2),
three sensitive sinks (t1, t2, and t3) and several internal
nodes, one of which involves a sensitive function. Android
permissions associated with the functions are shown at the
bottom of nodes. Consider two approaches for ranking the
risks of sensitive sinks: a sink-only approach and a source-
sink approach. In the straightforward sink-only approach,
the risk level of a sink is determined only by the sink’s
function name and the permission it requires. This approach
clearly cannot distinguish two different sinks sharing the
same function name, e.g., t1 and t3. It is also unclear
how to compare the risk level of t1’s permission and t2’s
permission.

In a more complex source-sink approach, the risk of
a sink is determined not only by the sink itself, but also
by all of its sensitive sources. For example, in Figure 2
the risk of sink t2 is associated with the permission set
(PHONE ST, RECEIVE SMS, and INTERNET), where
the first two permissions are from the two sources s1 and
s2, and the last permission is from the sink itself. Although

4

(a) The distribution of the sensitive taint flows distinguished by
source and sink pairs.

(b) The distribution of # of sensitive sources and sinks in the
app dataset.

Fig. 1: The example for the distribution of sensitive flows and sources and sinks.

s1: getDeviceID

n1

PHONE_ST

s2: getLocation

LOCATION

n2
n3: addMessage

READ_SMS

t1: sendTextMes.

SEND_SMS

t2: sendHttpPost

INTERNET

t3: sendTextMes.

SEND_SMS

Fig. 2: An example of a taint-flow graph. Nodes represent
function calls or instructions. Permissions (shown at the
bottom of a node) associated with the functions (shown at
the top of a node) are shown. Directed edges represent data
dependence relations.

this source-sink approach also needs a method to quantify
the risks of permissions, it is more desirable than the sink-
only method. The reason is that the source-sink approach
more accurately reflects sensitive flow properties.

This example indicates that a reasonable sink-ranking
algorithm needs 1) to capture internal data dependences;
2) evidence-based quantification of risk. In ReDroid, we
evaluate and compare several sink ranking mechanisms in
terms of how they impact app rewriting.

2.2 Definitions
We describe the workflow of our flow-ranking analysis
for sink ranking and rewriting. Our new capability is the
efficient computation of end-to-end flow risks, quantifying
risks associated with data-flow dependence. We first give
several key definitions used in our model, including self
risk, aggregate risk, and the standard taint-flow graph.
Definition 1. Taint-flow graph is a directed graph

G(V,E, S, T) with source set S ⊆ V and sink set T ⊆ V
and S ∩ T = ∅, where for any flow f = {v0, v1...vn} in
G, v0 ∈ S and vn ∈ T and e = {vi → vj} ∈ E. The flow
f represents the taint-flow path from the source v0 to the
sink vn, which is denoted as f = {v0 vn}.
The taint-flow graph is a subgraph of the data-flow

graph. Our model considers two types of risks for each node
in the taint-flow graph, self risk and aggregate risk, which are
defined next.

Self Risk. Given a taint-flow graph G(V,E, S, T) and a

node v ∈ V , the self risk Ps[v] of v is the risk associated
with v’s execution. Ps[v] = ∅, if no risk is involved.

Aggregate Risk. Given a sink t ∈ T in the taint-flow graph
G, the aggregate risk P [t] of sink t is a set that represents
the risks associated with the taint flows of t under some
aggregation function agg func().

Our instantiation of the risk metric is based on the analysis
of risks associated with sensitive APIs on data flows into a
sink. Therefore, self risk is also referred to as self permission,
and aggregate risk is also referred to as aggregate permission
for the rest of the paper. We compute risk values of permis-
sions through a maximum likelihood estimation approach.

In Section 3, we present two instantiations of the aggre-
gation function agg func(). One is a straightforward source-
sink (SS) aggregation, where the aggregate risk of a sink is
the union of self risks of the sink and its source(s). The other
is the end-to-end (E2E) aggregation, which outputs all the
permissions associated with all the taint flows that the sink
is in. Our experiments compare how these two aggregation
functions impact the flow-ranking accuracy.

2.3 Workflow
Figure 3 shows our workflow for sink ranking with graph
propagation. We briefly describe these operations.

1) Taint-flow Construction. We generate the taint-flow
graph that describes sensitive data flows from sources
to sinks. Nodes in the taint-flow graph are mapped to
their self risk values, as defined above. This mapping
process may vary, if different risk aggregation function
is used. We demonstrate two such functions, source-
sink aggregation and end-to-end aggregation.

2) Risk Propagation to Sinks. The operation outputs the
aggregate risk set for each sensitive sink. The propaga-
tion needs to efficiently traverse the data-dependence
edges from sources to sinks. The key in designing the
propagation algorithm is to visit each graph edge a
constant number of times, realizing O(|E|) complexity,
where |E| is the size of the graph edges. We present our
solution in Section 3.1.

3) Permission-Risk Mapping. We follow a maximum like-
lihood estimation approach to produce a risk value for
each permission empirically. Intuitively, the risk of a
permission is high, if the permission is often requested
by malware apps, but rarely by benign apps. With

5

Train Classifiers in
Machine-learning

Apps

Compute Aggregate
Permissions of Sinks

Dataset
(Malicious & Benign apps)Taint-flow Graph

Construction &
Topological Sorting&
Transitive Reduction

Self Permission
Initialization

Permission-based
Feature Extraction

Compute Permission-
based Risk Values

Permission Propagation
with Aggregation

(E2E/SS)

Ranking Sinks
With Risk Scores

Chose Classifiers
with 10-fold

Cross-validation

Fig. 3: Our workflow for prioritizing risky sinks.

labeled training data and machine learning (ML) classi-
fiers with permission-based features, we automatically
map permissions to risk values r ∈ [0, 1]. We present
our ML-solution in Section 3.2. 3

4) Flow-based Sink Prioritization. To obtain the risk score
of a sink, one needs to quantify the risk associated
with the sink’s aggregate permission. The risk score of
a sink is computed by its correlated permissions with
risk values. We rank the sinks according to their risk
scores. The risk score of sinks captures its importance
and security properties in the app.

Risk ranking guides the app customization for risk
reduction. For example, one can choose to intercept the
riskiest sink and relay the flow to a trusted runtime monitor.
We describe several security customization techniques in
Section 3.3. Besides rewriting, the sink-ranking technique
is also useful for static analysis based malware detection.

3 Risk Metrics and Computation
We aim to quantitatively compute and rank risks of sinks in
an app. Our approach is to construct the sensitive taint-flow
graph and compute the set of permissions associated with
each flow through graph propagation algorithms. The ag-
gregation algorithms find the accumulated risk factors (nam-
ing permissions) of a source-sink path in O(|E|) complexity,
where |E| is the number of edges in the graph. Our risk is
based on the permissions of sensitive APIs. Our pseudocode
is given in Algorithm 1 in the Appendix.

Next, we describe technical details of our operations. We
present risk propagation in Section 3.1, permission mapping
in Section 3.2 and rewriting in Section 3.3.

3. Other permission-risk quantification techniques may be used, e.g.,
Bayesian-Network based Android permission risk analysis [31].

3.1 Risk Propagation

The purpose of risk propagation is to aggregate all risky
flows associated with a sink.

Graph Construction We use Android-specific static pro-
gram analysis tools (namely FlowDroid) to obtain the taint-
flow graph G(V,E, S, T), which represents the data depen-
dence among code statements in the app from sensitive
sources to sinks, where n ∈ V is the statement in the
code and e = {n1 → n2} ∈ E represents that n2 is data
dependent on n1, S ⊆ V is the sensitive source set S and
T ⊆ V is the sensitive sink set. Loops may occur due
to control dependence, e.g., while loops. Our subsequent
permission aggregation only computes over distinct permis-
sions. Because each loop execution involves the same set of
permissions, we follow each loop only once. This reduction
generates a directed acyclic graph G(V,E, S, T).

Security analysts can customize their definitions of sen-
sitive sources and sinks based on organizational security
policies. These definitions impact the static taint analysis.
For example, smaller sensitive sets usually give fewer sensi-
tive flows required to rewrite.

Transitive Reduction. The purpose of transitive reduc-
tion is to maximally remove redundant edges while pre-
serving reachability of the graph [2]. Transitive reduction
helps us to reduce the iteration of edges in our quantitative
propagation analysis. It does not affect our final results
because it preserves the reachability from a source s ∈ S to a
sink t ∈ T . Specially, the reduced graph has the same nodes,
sources, and sinks, but different edges. Transitive reduction
transforms G(V,E, S, T) into G′(V,E′, S, T).

Specifically, the reduced graph G′(V ′, E′, S′, T ′) is a
subgraph of the original taint-flow graph G(V,E, S, T),
with E′ ⊆ E, and the number of nodes keep the same
V ′ = V , S = S′ and T = T ′.

Transitive reduction produces a directed acyclic graph
(DAG). For each sink t, it has a subgraph reversely rooted
by t, i.e., there exists a subgraph rooted by t, if the directions
of edges are reversed.

Risk Propagation to Sinks. With the assignment of
all the statements, we perform risk propagation analysis
algorithm on the graph G′(V,E′, S, T). Each node in the
graph is initialized with the corresponding self risk and the
empty set as its aggregate risks. Specifically, we provide two
different aggregation algorithms: SS (source-to-sink) aggre-
gation and E2E (end-to-end) aggregation in Definition 2.

Definition 2. Denote a taint-flow path in a transitive reduced
taint-flow graph G′(V,E′, S, T) by f = {s n1 ...
ni t}, where s ∈ S, t ∈ T and ni is an internal node
on f . We define source-sink (SS) aggregation and end-to-
end (E2E) aggregation methods as follows.

SS aggregation. The aggregate risk set P [t] of a sink
t ∈ T is defined as

P [t] = Ps[t] ∪
{ ⋃

{s∈S | ∃ f={s t} }
Ps[s]

}
(1)

6

Algorithm 1 Pseudocode for computing risk scores of sinks
from the risk propagation. The function getSelfPermission()
is used to compute the self risk. The function getRiskValue()
is used to compute the risk value for each permission with
machine learning.

1: Input: The sensitive taint-flow graph G a program.
2: Output: The sink set T with risk scores.
3: function PERAGGRE(Graph G(V,E, S, T), aggregation

function agg func)
4: Vsort = TOPOLOGICAL SORT(G)
5: G′(V,E′, S, T) = TRANSITIVE REDUCTION(G,Vsort)
6: /*P is a hashmap representing the aggregate permis-

sions for all nodes in G, and r is the hashmap representing
the risk score for all nodes in G */

7: for each v ∈ V do
8: P [v] = ∅, r[v] = 0
9: end for

10: if agg func == E2E then
11: /* In case of E2E aggregation */
12: for each v ∈ V do
13: P [v] = GETSELFPERMISSION(v)
14: end for
15: else agg func == SS
16: /* In case of SS aggregation */
17: for each v ∈ S ∪ T do
18: P [v] = GETSELFPERMISSION(v)
19: end for
20: end if
21: /* Propagation of sensitive permissions */
22: for (i = 1 → Vsort.size()) do
23: v = Vsort[i]
24: for e = {v1 → v} ∈ G′ do
25: P [v] = P [v] ∪ P [v1]
26: end for
27: if v ∈ T then
28: for each p ∈ P [v] do
29: /* Map permissions to risk values */
30: r[v]+ = GETRISKVALUE(p)
31: end for
32: end if
33: end for
34: return r
35: end function

E2E aggregation. The aggregate risk set P [t] of a sink
t ∈ T is defined as

P [t] = Ps[t]∪
{ ⋃

{s∈S, {n1...nk}∈f
| ∃ f={s t}}

Ps[s] ∪ Ps[n1]... ∪ Ps[nk]

}

(2)

E2E aggregation for a sink t generates a set that consists
of all the distinct permissions corresponding to the taint-
flow subgraph that is reversely rooted by t. The difference
between the two aggregations is on the sensitive internal
nodes. The SS aggregation only considers the sensitive
sources and sinks, whereas the E2E aggregation includes
the permissions of internal nodes. The E2E aggregation
produces all the distinct permissions that are required by
the taint-flow subgraph that is reversely rooted by a sink t.

Following a taint flow, the aggregate risk set of a node
is non-decreasing (i.e., increasing or stable). If nj is the
successor of ni on a path, the permission used in ni is
propagated to nj . Algorithm 1 shows the pseudocode for
the permission aggregation and risk computation.

For the example in Figure 2, the output of E2E and SS
aggregations are the same for sinks t1 and t2, i.e., P [t1]
={PHONE ST, SEND SMS}, and P [t2] ={PHONE ST,
RECEIVE SMS, INTERNET}. However, they are differ-
ent for sink t3. Specifically, for SS aggregation P [t3] =
{RECEIVE SMS, SEND SMS}, whereas E2E aggregation
has a larger aggregate risk set for the sink, which is P [t3] =
{RECEIVE SMS, READ SMS, SEND SMS}. Our exper-
iments in Section 4.2 show how they impact security and
rewriting.

The flow-based sink aggregation algorithm can be mod-
ified to compute risk scores of flows. For a flow f =
{v0 vn}, risk value of node n ∈ f is computed by
getRiskV alue(n). The risk score of flow f is computed
though the propagation from v0 to vn without aggregation
of other flows.

3.2 Permission-Risk Mapping with Maxi-
mum Likelihood Estimation
The purpose of permission-risk mapping is to quantify
the risk values of sensitive permissions. Although research
has shown certain permissions are predictive of malware
and researchers propose risk-quantification mechanisms for
permissions (e.g., rule-based Kirin [20] and Bayesian-based
probabilistic models [31]), how to use them for prioritizing
sinks for rewriting has not been systematically studied.

Definition 3. Sink Risk. For a sink t in a taint-flow graph G,
we evaluate its risk based on its aggregate permissions
P [t]. In ReDroid, we compute r(t) as the summation of
quantified permission risks:

r(t) =
∑

p∈P [t]

w(p) (3)

where w() is a function that maps a permission p to a
quantitative risk value w(p).

We follow a maximum likelihood estimation approach,
to empirically map a permission p to their quantitative
risk value w(p). We parameterize binary classifiers with
permission-based features. The task of binary classifiers is
to label an unknown app as benign (negative) or malicious
(positive). The optimal permission-risk mapping and config-
uration should maximize the accuracy of a binary classifier,
i.e., low false positives (false alarms) and low false negatives
(missed detection of malware).

We use the feature-importance value of a permission
as a security measurement for the permission sensitivity.
An important permission is an indicator of malicious apps,
because malicious apps request more critical permissions
(e.g., READ SMS) from empirical studies [5]. A permission
(e.g., INTERNET) existing in both benign and malicious
apps has a low importance value. Our method automatically
maps a permission string into a quantitative risk value.

Our training set is selected from both malicious and
benign app dataset. We evaluate several supervised learning
techniques (e.g., KNN, SVM, Decision Tree and Random
Forest) and compare their accuracy in Section 4.5. The
Random Forest classifier achieves the highest accuracy. The
evaluation of these classifiers is based on standard measure-
ments, namely 10-fold cross-validation. We use the classifier

7

Rewriting
Granularity

I-ARM-Droid [15]
RetroSkeleton [14]

ReDroid
(Ours)

Package-level (Repackage) X X
Class-level (Class Inject) X X
Method-level (Method Invoc.) X X
ICC-level (Intent Redirect) – X
Flow-based Rewriting – X
Sink-based Rewriting – X

TABLE 2: Comparison of ReDroid with existing Android
rewriting frameworks. Method invoc. is short for method
invocation to invoke a customized method instead of an
original method. RetroSkeleton is implemented based on
I-ARM-Droid. ReDroid supports more rewriting strategies
than the existing frameworks.

that maximizes the classification accuracy to compute the
risk values of permissions.

3.3 Automatic App Rewriting
We rewrite on the app’s intermediate representation Jimple,
which is based on Java analysis framework Soot. The Soot
supports Java-specific function instrumentation. We imple-
ment our rewriting framework by supporting Android-
specific components, e.g., ICC. Our prioritizing algorithm
is regarded as a Soot plug-in to quantitatively compute
risk scores for sinks. Table 2 presents the comparison of
ReDroid with existing Android rewriting frameworks. Our
ReDroid supports more rewriting operations, including in-
tent redirection, than current rewriting solutions. Unlike
previous rewriting demonstrations on Smali (such as [14],
[43]), our inter-app ICC relay rewriting approach requires
more substantial code modification 4.

The target sink can be selected by the sink prioritization.
We identify a target sink based on its package, class and
method names and the context of the sink (e.g., parameters).
Once the target sink is located, code modification is more
challenging, as it needs to ensure the successful execution
of the modified app. We reuse the registers and parameter
fields from the original code. We replace the sink function
with a new customized function. We compile the new
function separately and extract its Jimple code. The new
function’s parameters need to be compatible with the API
specification and the context.

Proactive Rewriting with Inter-app ICC Relay. This
ICC-relay strategy redirects data flows to the risky sink
of an app to a trusted proxy app, so that the trusted
proxy app can inspect the data before it is consumed (e.g.,
sent out). Our redirection mechanism leverages Android-
specific inter-component communication (ICC) and explicit
intent. Android ICC mechanism enables the communication
among different apps [13].

The original intent is replaced by a new explicit intent
that invokes methods in the proxy app in order to complete
the task. The original intent is cloned and stored in a data
field of the new explicit intent. This redirection mechanism
gives the proxy an opportunity to inspect the sensitive data
of the original intent at runtime. Specifically, once the trusted
proxy receives a request from the rewritten app via ICC,

4. Without access to the code of existing solutions, we aim to release
our framework to facilitate the reproduction of app rewriting.

the execution of the rewritten app is paused (i.e., onPause
is invoked). The proxy can choose to log the requests and
analyze them offline, or perform online inspections (with
respect to pre-defined policies). Upon proxy’s completion,
the original intent is re-constructed to allow the rewritten
app to continue its execution. The execution of the app may
be impacted by the invocation of the ICC, especially when
the proxy’s inspection is performed online.

Passive Rewriting with Logging. Passive logging-based
rewriting is useful for intercepting dynamically generated
data structures that are related to risky sinks, e.g., a URL
string in an HTTP request that is manipulated along the
taint flow. The static taint-flow analysis can detect the sus-
picious risky sink with strings as its parameters. However,
the exact content of the string usually cannot be resolved
through static analysis. Logging them to local storage en-
ables offline inspection.

The advantages of the logging approach are two-fold.
(1) It is relatively straightforward to implement at the Smali
level, and (2) logging does not impact the execution path
of the rewritten app. The rewritten app executes without
interruption. However, the analysis in this approach is
conducted the offline, whereas the redirect mechanism can
actively block data leaks at runtime if needed.

3.4 Discussion and Limitations
We discuss limitations of our approach and future direc-
tions. This paper is focused on technical aspects of app
modifications. Legal issues (e.g., copyright restrictions) are
out of the scope of discussion.

Flow Precision. Static analysis cannot estimate exactly
dynamic execution paths, our graph analysis is conserva-
tive and may over-approximate the permissions related to
the sinks. Our prototype is built on the existing frame-
work FlowDroid, for the facility of generating flow-sensitive
graphs. Our approach can be also built on other program
analysis frameworks, e.g., [29], [22]. Our main source of
imprecision in sink ranking comes from imprecise data-flow
graphs. Current static program analysis over-approximates
apps’ behaviors by considering all possible paths, including
some infeasible paths. The over-approximation in graphs
introduces inaccuracy for our quantitative analysis. Thus,
the corresponding aggregate permissions and risks of sinks
in ReDroid may be overestimated.

Native Code Native code gains its popularity recently
for code obfuscation[36]. Android supports invoking sen-
sitive APIs in a reflection-like way from native code
dynamically[1]. Native code introduces missing edges for
the static tool FlowDroid to generate graphs in our analy-
sis. A possible mitigation is to introduce hybrid analysis.
Hybrid analysis combines static analysis similar to our
approach and dynamic analysis to resolve reflected APIs
by running the application at runtime. However, hybrid
analysis suffers from performance and is not as scalable as
static analysis. Therefore, more substantial work is needed
for balancing precision and scalability.

Dynamic Permission. Google has recently introduced
Android dynamic permission to protect user privacy 5.
Dynamic permission provides an interface for denying the

5. https://goo.gl/9FTnEL

8

access of reading private data (i.e., sources). However, dy-
namic permission ignores the data flow dependence. It can-
not track data and estimate how the private data is abused.
In contrast, our rewriting is based on ranked sinks with the
aggregated sensitive data flows. Our approach can estimate
the risk score of a dangerous sink and provide customized
rewriting operations. In compliment with dynamic permis-
sion, our rewriting provides two-factor data verification for
both sources and sinks.

Rewriting Challenges. Code rewriting requires substan-
tial technique skills. If not careful, the retrofitted app may
not be successfully recompiled or may crash at runtime.
Our sink ranking and rewriting is automated. However,
the current rewriting demonstration is based on the in-
termediate representation Jimple via reverse engineering.
Current cutting-edge reverse engineering tools (e.g., Soot)
cannot extract Jimple IR from native code or encrypted code.
Therefore, more substantial work is needed for increasing
the rewriting usability.

4 Experimental Evaluation
We use FlowDroid [6] for static program analysis. Our
mapping from a statement into the requested permission is
based on PSCout [7]. It identifies 98 distinct permissions,
and builds a one-to-one projection from 15,099 distinct
statements to the corresponding permissions. Permission
risk value is computed based on a machine learning toolkit
Sklearn. We use Androguard to extract permissions from a
large set of apps. The permission risk is computed by using
the App Genome dataset. It can also be computed based on
Androzoo [4] dataset. We choose the Genome dataset for the
demonstration. The source and sink identifiers come from
SUSI [33], which categorizes a large set of critical sources and
sinks. The graph analysis is based on a standard Java graph
library JGraphT. Unless stated otherwise, we use E2E aggre-
gation to evaluate the properties of malicious and benign
apps. The rewriting process is based on the assemble and
disassemble tool Soot. The app is automatically modified
to enforce security properties and recompiled into a new
application. Our evaluation is performed on 923 malicious
apps from Genome dataset and 683 free popular benign
apps from Google Play. The benign apps are verified via
the VirusTotal inspection6. These apps cover different cate-
gories and contain complex code structures. As we show in
Figure 1, a single app contains 11 distinct sensitive sources
and 19 distinct sensitive sinks on average.

We aim to answer the following questions through our
evaluation:
• RQ1: Can ReDroid be used to rewrite real world gray-

ware and benchmark apps to defend vulnerabilities? (In
Section 4.1).

• RQ2: Does the more complex E2E aggregation method
provide high accuracy in ranking (In Section 4.2)?

• RQ3: Are the ranking results interpretable, e.g., consis-
tent with manual validation (In Section 4.3) ?

• RQ4: Is ReDroid flow-aware, i.e., being able to differen-
tiate sinks with identical method names (In Section 4.4)?

6. https://www.virustotal.com/

App Category #of ICC
Exits

Logging
Success

ICC Relay
Success

ICCBench Re. In. Re. In.
icc implicit action 1 1 1 1 1
icc implicit category 1 1 1 1 1
icc implicit data 2 2 2 2 2
Icc implicit mix 3 3 3 3 3
icc implicit src sink 2 2 2 2 2
icc dynregister 2 2 2 2 2
DroidBench(IccTA)
iac startActivity 1 1 1 1 1
icc startActivity 2 2 2 2 0
iac startService 1 1 1 1 1
iac broadCast 1 1 1 1 1
Summary 16 16 16 16 14

TABLE 3: Evaluation of ICC relay and logging based rewrit-
ing on benchmark apps. The column of Re. means the num-
ber of apps that can run without crashing after rewriting.
The column of In. means the number of apps that we
can successfully invoke the sensitive sink and observe the
modified behaviors.

• RQ5: How efficient is our maximum likelihood estima-
tion for the permission-risk mapping (In Section 4.5)?

• RQ6: How much is our analysis overhead (In Sec-
tion 4.6)?

4.1 RQ1: Rewriting Apps for Security
We present the feasibility of ReDroid to detect and rewrite
real world grayware apps that previously have not been
reported. We also demonstrate the ICC-relay based rewrit-
ing technique. Table 1 summarizes the security applications
with our rewriting. We utilize benchmark apps to evaluate
the feasibility of our rewriting framework. The benchmark
apps are proposed by IccTA [26] and AmanDroid [39] to
achieve high coverage of various ICC vulnerabilities. We
also use two real world grayware apps to demonstrate
the possibility to use rewriting to mitigate static analysis
limitations.
Benchmark Suits Evaluation. We evaluate our ICC relay
and logging rewriting strategies on DroidBench(IccTA)7

and ICC-Bench8. Apps in the ICC-Bench contain ICC-based
data leak vulnerabilities. DroidBench also involves collusion
apps through inter-app communications. Logging based
rewriting achieves 100% success rate in both rewriting and
observing the modified behaviors. The reason why logging
based rewriting achieves high accuracy is that the inspection
of sensitive sinks does not violate the program control and
data dependences. All the rewritten apps keep valid logic
(without crashing) when we run these apps with Monkey9.
We can detect private data in the intent by inspecting the
logs at runtime. It is worth to note that the logging based
rewriting is easily extended to support dynamic checking.
By implementing a sensitivity checking function for the
logged data, our logging based rewriting can terminate the
sink invocation at runtime. Therefore, the logging based
rewriting is more suitable to defend privacy leak vulnera-
bilities in stand-alone apps.

7. https://github.com/secure-software-engineering/DroidBench/
tree/iccta

8. https://github.com/fgwei/ICC-Bench
9. https://developer.android.com/studio/test/monkey.html

9

For ICC relay rewriting, we can successfully rewrite all
the apps but fail to redirect the intent in two cases. The
failed two cases belong to the icc startActivity category,
where the receiver component InFlowActivity is protected
and not exposed to components outside the app. Our ICC
relay cannot reinvoke the receiver component from the
outsider proxy app. Except the two cases, our rewriting is
able to relay and redirect all the intents in the inter-app
communications (IAC). Furthermore, implicit intents only
specify the properties of receiver components by actions or
categories. Adversarial apps can intercept implicit intents by
ICC hijacking. Our ICC relay is capable to relay the implicit
intent and inspect the receiver components. Therefore, the
ICC relay is more suitable to defend IAC-based vulnerabili-
ties.
Grayware I – Reflection and DexClassLoad. The grayware
app belongs to the game category targeting Pokemon
fans. It is a puzzle game based on the Pokemon-Go
app. The package called mobi.rhmjpuj.ghmjvk.sprvropjgtn
appears on a third-party market (AppChina Market).
VirusTotal reports it as benign 10. However, we
found multiple permissions registered in the app,
e.g., WRITE EXTERNAL STORAGE, GET TASKS,
PHONE STATE, SYSTEM, RESTART PACKAGES and
etc. This puzzle app is potentially risky, as it appears
to request for more permissions than necessary and
has dynamically loaded code (e.g., DexClassLoad) and
reflection methods (e.g., Java.lang.reflection).

We use ReDroid to perform the logging-based rewriting,
aiming to intercepting reflection and Dexloaded strings.
For reflection, we focus on strings related to get class and
method names (e.g., Class.forName and Class.getMethod)
before reflect.invoke is triggered. For dynamic dex load-
ing, we focus on strings before they are passed into sys-
tem.DexClassLoader.loadClass to dynamically load classes.
The sensitive string parameters are logged by ReDroid. We
test the rewritten app on an emulator, using Monkey. Dur-
ing our execution (nearly 100 seconds), the reflection and
dynamically loaded classes showed no suspicious activities.

This customization demonstrates the monitoring of Java
reflection and dynamic code loading regions through rewrit-
ing. The monitoring of activities from rewritten apps can
be automated with minimal human interactions with pre-
defined rules and filters. App customization provides op-
portunities to perform dynamic monitoring of apps in pro-
duction environments.
Grayware II – URL Strings. The grayware app be-
longs to the wallpaper category targeting Pokemon-Go
fans. It is a Pokemon wallpaper app. The package called
com.vlocker.theme575c30395* appears on a third-party An-
droid app market (Anzhi Market). The app was released
leveraging the world-wide popularity of the Pokemon-Go
app. Only 1 out of 55 anti-virus scanners reports this app
as potentially risky. However, the wallpaper app contains
a large number of sensitive sinks as URL.init(), file.write(),
executeHttp(). It requests multiple permissions, including
writing settings: WRITE EXTERNAL STORAGE, modi-
fying the file system: FILESYSTEMS, intercepting calls:
PROCESS OUTGOING CALLS, and changing network

10. We submitted two grayware APKs to VirusTotal on Aug-10-2016

state: CHANGE NETWORK STATE. These permissions
enable the wallpaper app to read sensitive information
and modify the device state. We rewrote the URL related
sink, e.g., net.URL.init(String) to log string type data before
calling net.URL.openConnection(). We tested the rewritten
app on an emulator, using Monkey. By analyzing the logged
events, we found that private data (e.g., phone ID, IMEI) is
leaked through a network request, when a user clicks on an
image. Similarly as above, the monitoring of activities from
rewritten apps can be automated.

The experimental results present the feasibility of the
rewriting on both benchmark and real wold apps. We
demonstrate two real world use cases to apply ReDroid to
mitigation static analysis limitations.

4.2 RQ2: Comparison of Ranking Accuracy
We compare our SS and E2E aggregation with the fol-
lowing sink-ranking metrics in terms of their accuracy in
identifying the riskiest sinks. We compare our aggregation-
based sink-ranking metrics with 2 basic metrics: the in-degree
metric and the sink-only metric. In the in-degree metric, the
sensitive sink’s risk score is determined by its in-degree
on a taint-flow graph. In the sink-only metric, the sensitive
sink’s risk score is determined by the risk of this sink’s self
permission.

We compare the result of the riskiest sink selection
among several risk metrics. The comparison is expressed as
the result consistencies, with respect to the E2E aggregation
metric. For only 25% of the malware apps, the sink-only
approach produces consistent riskiest sink result with E2E.
This rate is higher at 47% for benign apps. The in-degree
approach clearly has a very low consistency with E2E, i.e,
they disagree on most rankings.

Although both SS and E2E agree to most cases, we
found they disagree on long taint-flow paths that have sen-
sitive internal nodes. Internal nodes (i.e., non-sink and non-
source) on taint flows may also involve sensitive permis-
sions. For example, in app cc.halley.droid.qwiz, a sensitive
taint flow as: findVIewbyId() → getActiveNetworkInfo() →
outputStream() → Log.e(). Both source findVIewbyId() and
sink Log.e() are permission-insensitive, however, the sensi-
tive internal codes on the path increases the sensitivity of the
sink. getActiveNetworkInfo() is associated with permission
NETWORK and outputStream() is associated with permis-
sion EXTERNAL STORAGE. The path is risky, because
the internal nodes involve critical permission. Network state
information is propagated and may be potentially leaked
along the path. A lack of coverage on the internal sensitive
nodes introduces ranking inaccuracy. These results confirm
that the comprehensive coverage of permission-requiring
nodes in E2E aggregation is useful in practice.

Since E2E captures internal data flow dependences, it
would be expected for E2E to achieve a higher accuracy
comparing to SS, which is validated by our experiments.
However, SS aggregation is still useful to balance accuracy
and performance. We found E2E encounters additional 4%
overhead in Section 4.6.

We compare the permission propagation properties in
malicious and benign apps. We consider two conditions,
A and B, which are defined next. Table 4 presents the
percentages of apps that exhibit such conditions. The ex-

10

perimental results show a large number of apps, especially
malware, involve multiple (≥ 2) sensitive permissions on
taint flows. They indirectly validate the importance of flow-
based permission propagation and aggregation algorithm.
Condition A is where the risk of the aggregate permission
of the riskiest sink is greater than the risk of the sink’s self
permission.
Condition B is where the risk of the aggregate permission of
the riskiest sink is greater than the risk of the (aggregated)
self permissions of its corresponding sources.

Condition A Condition B
Malware 92% 88%
Benign 41% 40%

TABLE 4: Percentages of malware and benign apps that
exhibit conditions A and B, respectively, where condition A
is where the risk of the aggregate permission of the riskiest
sink is greater than the risk of the sink’s self permission, and
condition B is where the risk of the aggregate permission of
the riskiest sink is greater than the risk of (aggregated) self
permissions of its corresponding sources.

4.3 RQ3: Validation of Sink Priorities
Because of the lack of standard benchmarks 11, validating
the quality of sink priorities is challenging. We perform
manual inspections by comparing the riskiest sinks with the
descriptions for known grayware and malware apps, to en-
sure our outputs are consistent and compatible with English
descriptions found in security websites and articles. Due to
the limited reports, we narrow down our analysis in popular
ads libraries and typical malware families. These reported
apps include varied behaviors, from network communica-
tions to root privilege escalations. The in-depth literature
on grayware is scant, which increases the difficulty of this
validation.

For grayware apps jp.co.jags and android.TigerJumping,
our analysis returns the risky method net.URL located
in the jp.Adlantis package. This finding is consistent with
previous report stating that Adlantis libraries cause binary-
classification based malware detection to fail [38].

For grayware apps org.ohny.weekend, org.qstar.guardx
and uk.org.crampton.battery, our analysis returns the risky
sink execute() located in an ad package com.android.Flurry.
This ad library was previously reported to demonstrate
excessive amounts of unauthorized operations by re-
searchers [18].

For malware in the Geinimi family (e.g., Geinimi–
037c*.apk), our analysis identifies the risky sink
sendTextMessage. This sink is confirmed by a security
report 12. It is identified as a trojan to send critical messages
to a premium number.

For malware in Plankton family (e.g., Plankton–
5aff*.apk), our analysis returns the risky sink exe-
cute(HttpRequst) associated with aggregate permission as
READ PHONE STATE (from a source getDeviceId()) and
INTERNET. Our finding is consistent with the report of this

11. We aim to release our dataset as a benchmark.
12. https://nakedsecurity.sophos.com/2010/12/31/geinimi-

android-trojan-horse-discovered/

Ti T1 T2 T3 T4

C com.ju6.a

uk.co.
lilhermit.
android.

core.Native

com.adwo.
adsdk.L

com.adwo.
adsdk.i

M a() runcmd
wrapper() a() a()

F Android.util.Log int e()
r(Ti) 0.170 0.156 0.007 0

TABLE 5: A case study for sink T1, T2, T3 and T4. Ti

represents the sink ID, C represents the class name, M
represents the method name, F represents the function
name. They have different risk scores with a same function
android.util.Log: int e under different classes and methods
inside an app DroidKungFu3–1cf4d*. E2E and SS aggrega-
tions identify the same sensitive sink. T1 is the riskiest sink
with more critical taint flows and permissions.

malware, which refers to it as the spyware with background
stealthy behaviors involving a remote server 13.

For malware in DroidDream (e.g., DroidDream–
fed6*.apk), our analysis returns the risky sink write(byte[])
in package android.root.setting. An external report cites
this malware for root privilege escalation 14. These manual
validation efforts provide the initial evidences indicating the
quality of our ranking results.

4.4 RQ4: Case Study on Sensitive Taint
Flows
We use a real world app DroidKungFu3–1cf4d* to illus-
trate the importance of risk propagation. This app has
four distinct sinks sharing the same method name. The
method name is android.util.Log. This function requires no
permission, i.e., self permission is ∅. Yet, the four sinks
have different risk scores computed by our risk aggregation
procedure. Table 5 presents the four sinks with their risk
scores.

The sink with the highest risk score involves three
distinct permissions READ PHONE STATE, LOCATION
and INTERNET. The sources getLine1Number(),
getDeviceId(), getSubscribeId() and getSimSerialNumber()
are related to READ PHONE STATE permission. The
source getLastKnownLocation() and the internal node get-
Longitude() are related to LOCATION permission. The ex-
ecute(HttpUriRequest) and openConnection() are related to
INTERNET permission. getIntent() requires no permission.
Although these sinks share the same function name, the
riskiest sink T1 involves more critical paths than the others.

• T1: getLastKnownLocation() → getLongitude() → T1,
getLine1Number() → T1, getDeviceId() → T1, getSub-
scribeId() → T1, getSimSerialNumber() → T1, exe-
cute(Http)→ T1.

• T2: execute(HttpUriRequest) → T2, getLine1Number()
→ T2, getDeviceId()→ T2.

• T3: openConnection()→ T3 .
• T4: getIntent()→ T4.

13. https://www.csc.ncsu.edu/faculty/jiang/Plankton/
14. https://blog.lookout.com/droiddream/

11

4.5 RQ5: Quality of Likelihood Estimation
Our machine learning techniques enable to compute risk
scores of permissions, which maps one particular permis-
sion to a quantitative and computable score value. We test
four different machine learning approaches: Support Vec-
tor Machine (SVM), k-nearest neighbors (KNN), Decision
Tree (D.Tree) and Random Forest (R.Forest). The dataset is
originally labeled for Android malware classification [38].
We reuse the dataset for our risk score computation. The
benign apps are collected from official app market Google
Play. The malicious apps are selected from popular malware
database Genome and VirusShare. It is worth to note that
our machine learning technique is aimed to compute the
risk scores of permissions, not for malware classification.
The permissions of an app are transformed into features
for each classifier. Each permission corresponds to a certain
position in a feature vector, where 1 means the app registers
for this permission and 0 means the app does not register
for this permission. We apply two standard evaluation mea-
surements: 10-fold cross-validation and ROC curve. 10-fold
cross-validation divides the dataset into 10 portions. Each
time, the 9 portions of them are used as the training set and
the rest of the data is used as the testing set.

We compute the average accuracy rate and F-score to
evaluate these classifiers. Receiver operating characteristic
(ROC) curve draws a statistic curve and computes an area
under curve (AUC) value. A higher AUC value represents a
better classification capacity.

10-fold CV ROC Curve
F-Score Accu AUC value

KNN 0.88 0.88 0.9786
SVM 0.91 0.92 0.9584

D.Tree 0.94 0.94 0.9661
R.Forest 0.96 0.96 0.9796

TABLE 6: Compare classification performance with two
different measurements: 10-fold cross-validation and ROC
curve with AUC value. Random Forest achieves highest
accuracy in the four different classifiers. The detection
achieves 96% accuracy for distinguishing malicious and
benign apps.

The experimental results validate the hypothesis that
permissions are useful as the features to distinguish the
benign and malicious apps. Random Forest maximizes the
accuracy in the classification.

Table 6 presents the detection accuracy of four different
classifiers. Random Forest achieves the highest accuracy and
AUC value among these four classifiers. In ReDroid, we
calculate the risk value for each permission in the random
forest classifier. Table 7 presents top risky permissions with
their normalized risk values. We focus on the permissions
that are related to private data and phone state reading.
Specifically, READ PHONE STATE achieves highest risk
value as 0.149. The reason why READ PHONE STATE is
most sensitive is because it enables an app to access private
phone information, e.g., device Id and current phone state.
Malicious apps abuse this permission for collecting privacy
information. These sensitive permissions have higher risk
values, because they are associated with malicious behav-
iors. In our quantitative analysis, the risk values of per-

Permission Risk Value
READ PHONE STATE 0.149
READ SMS 0.107
RECEIVE SMS 0.090
CHANGE WIFI STATE 0.080
WRITE SMS 0.062
SEND SMS 0.050
WRITE CONTACTS 0.034
READ CONTACTS 0.034
REC BOOT COMPLETED 0.029

TABLE 7: Top risky permissions with their normalized risk
values. Risk values are computed based on feature impor-
tance from Random Forest classifier. Risk values are com-
puted by the maximization of the capability to distinguish
benign and malicious apps.

missions are used as the input for initialization of sensitive
nodes.

4.6 RQ6: Analysis Overhead
We compare the runtime of Algorithm 1 under two SS and
E2E aggregations in Figure 4. 15 Experiments were per-
formed over both benign and malware datasets on a Linux
machine with Intel Xeon CPU (@3.50GHz) and 16G memory.
Figure 4 presents the four runtime distributions in log scale.
The runtime is focusing on the permission propagation
analysis with the input of the transitive reduced graph and
the output of sorted sinks. Both E2E and SS aggregations
have a similar low overhead of around 0.1 second. E2E has
an additional 4% overhead than SS on average. The average
runtime of malware is larger than that of benign apps, be-
cause malware apps typically have more sensitive sinks and
complex graph structures. The performance results confirm
the efficiency of our graph algorithm.

We evaluate rewriting performance based on the file size
overhead. The benchmark apps come from DroidBench and
ICC-Bench in Section 4.1). On average, both logging and ICC
relay based rewriting achieves <1 % size overhead, which
is relatively negotiable. Our approach is very efficient in
rewriting benchmark apps. We also discuss the sources that
introduce size overhead in practical rewriting scenarios. 1)
The complexity of rewriting. If the rewriting strategy is very
complex, e.g., dynamic checking with multiple conditions,
we need to implement more rewriting functions. 2) The
number of impacted code in rewriting. If we need to rewrite
a large number of sinks in an app, the rewriting overhead
increases significantly. Therefore, with the sensitive sink
prioritization, we could optimize the number of sinks for
rewriting based on the sensitivity ranking.

Summary of Experimental Findings. We summarize our
major experimental findings as follows.

1) We give multiple demonstrations of app customization
for security, including inter-app ICC relay and logging.
We successfully detect and rewrite recently released
Pokemon-Go related grayware, which enables the mon-
itoring of runtime activities involving Java reflection
and dynamic code loading and URL strings.

15. Runtime measured excludes FlowDroid and maximum likelihood
estimation.

12

Fig. 4: Runtime of permission propagation in Algorithm 1
on malware and benign apps under SS and E2E aggregation
functions, respectively. Both aggregation methods have a
low average runtime of around 0.1 second, with E2E ag-
gregation slightly slower than SS.

2) Our risk-ranking algorithm is efficient for real world
apps. Given a taint-flow graph, our graph algorithm
with E2E aggregation has an additional 4% overhead
than the SS aggregation, but both can complete within
0.1 second for most real world apps.

3) Manual inspections show that our risk ranking results
are consistent with the English descriptions of apps, for
a small set of malware apps and grayware apps. This
consistency indicates the effectiveness of sink prioriti-
zation algorithms.

4) SS and E2E aggregations are consistent in finding the
riskiest sinks on most apps, with E2E being slightly
more comprehensive for long tainted flows with sensi-
tive internal nodes. They substantially outperform sink-
only and in-degree approaches. Malware sinks have
more aggregate permissions and risk scores than those
of benign apps. In 92% of malicious apps, the aggregate
permission of the riskiest sink is greater than the risk of
the sink’s self permission, only in 41% of benign apps,
the aggregate permission of the riskiest sink is greater
than the risk of the sink’s self permission.

5 Related Work
Android Taint Flow Analysis The vulnerability of apps can
be abused by attackers for privilege escalation and privacy
leakage attacks [11]. Researchers proposed taint flow anal-
ysis to discover sensitive data-flow paths from sources to
sinks. CHEX [29] and AndroidLeaks [22] identified sensi-
tive data flows to mitigate apps’ vulnerability. Bastani et
al. described a flow-cutting approach [9]. However, their
work only provides theoretical analysis on impacts of a cut,
without any implementation. DroidSafe [23] used a point-to
graph to identify sensitive data leakage. FlowDroid [6] pro-
posed a static context- and flow-sensitive program analysis
to track sensitive taint flows. These solutions address the
privacy leakage by tracking the usage of privacy informa-
tion. Our sink ranking is based on static analysis and our
prototype utilizes FlowDroid.

Android Rewriting The app-retrofitting demonstra-
tion in RetroSkeleton [14] aims at automatically updating
HTTP connections to HTTPS. Aurasium [43] instruments
low-level libraries for monitoring functions. Reynaud et
al. [34] rewrote an app’s verification function to discovered

vulnerabilities in the Android in-app billing mechanism.
AppSealer [44] proposed a rewriting solution to mitigate
component hijacking vulnerabilities, the rewriting is to
generate patches for functions with component hijacking
vulnerabilities. Fratantonio et al. [21] used rewriting to en-
force secure usage of the Internet permission. Because of
the special goal on INTERNET permission, the rewriting
option cannot be applied to general scenarios. The rewrit-
ing targets and goals in these tools are specific. Further-
more, our rewriting is more feasible than existing rewriting
frameworks by supporting both ICC-level and sink-based
rewriting with data flow analysis.

Malware Detection with Quantitative Reasoning Our
work is also related to malware classification with quantita-
tive reasoning. Researchers [41], [42] regarded the quantita-
tive value among difference processes as the total number
of transferred resources based on the OS-level system logs.
These numbers are used to better distinguish malicious and
benign processes. PRIMO [30] used probabilities to estimate
the likelihood of implicit ICC communications. The triage
of ICC links is based on the true positive likelihood of
links. MR-Droid [27] measured inter-app communication
properties with static analysis. DIAL-Droid [10] performed
static analysis on millions of apps to discover suspicious
ICC link communications. DroidCat [12] utilized app-level
profiling to identify malicious behaviors. Peng et al. [31]
used permissions to detect Android malware. The permis-
sion risk values are generated from probabilistic Bayesian-
Network models. In contrast, we compute permission risk
values by maximizing the classifier’s capacity of detecting
malicious and benign apps. The risk value computation in
our approach associates a permission’s correlation to mali-
cious apps. These approaches are not compatible with risky-
sink-guided rewriting as they are not designed for security
customization of off-the-shelf apps. In our model, sensitive
sinks are prioritized based on the aggregate risk scores. Our
analysis is focused on quantitatively ranking different sen-
sitive sinks. Our results validate the effectiveness of ranking
sinks with machine-learning-based risk value computation
and graph-based permission propagation.

Defense of Vulnerabilities Grayware or malware with
vulnerabilities can result in privacy leakage. Pluto [35]
discovered the vulnerabilities of the abuse in ads libraries.
In order to defend vulnerabilities, many approaches have
been proposed to track dynamic data transformation or
enforce security policy. TaintDroid [19] adopted dynamic
taint analysis to track the potential misuse of sensitive
data in Android apps. CrypoGuard [32] used static slicing
to identify security vulnerabilities. Karim et al. [16] used
static program analysis to approximate suspicious inter-
application communication vulnerabilities. Merlin [8] used
path constraints to infer explicit information specifications
to identify security violations. AspectDroid [3] used static
instrumentation and automated testing to detect malicious
activities. We demonstrate the defense of vulnerabilities by
rewriting apps in the experiments. Our quantitative rewrit-
ing is operated on application level with rewriting. We rank
flow-based sinks by the graph propagation with permission-
based risk values. We specialize different rewriting rules to
defend vulnerabilities.

Program Repairing Program repairing is related to our

13

work since it provides solutions for generating patches. The
patches are used to identify bugs for program repairing.
GenProg [25], [40] used genetic programming algorithms to
discover patches that lead to bugs. PAR [24] used human-
defined patch templates to learn patterns for fixing bugs.
Prophet [28] used a probabilistic model to characterize the
properties of correct code patches. The trained model is used
to detect defects in real world apps. Our approach differs
from these approaches in the model design. Our approach
is designed for enhancing Android specific security with
rewriting. Our approach enforces security properties on
the sensitive sinks from the computation of graph-based
permission propagation.

6 Conclusions and Future Work
In this paper, we present two new technical contributions for
Android security, a quantitative risk metric for evaluating
sensitive flows and sinks, and a risk propagation algorithm
for computing the risks. We implement a prototype called
ReDroid, and demonstrate the feasibility of both ICC-relay
and logging-based rewriting techniques.

ReDroid is a tool for (1) quantitatively ranking sensitive
data flows and sinks of Android apps and (2) customizing
apps to enhance security. Our work is motivated by apps
that appear mostly benign but with some security concerns,
e.g., risky flows incompatible with organizational policies,
aggressive ad libraries, or dynamic code that cannot be stati-
cally reasoned. We extensively evaluated and demonstrated
how sink ranking is useful for rewriting grayware to im-
prove security. Our risk metrics are more general and can be
applied in multiple security scenarios. For future research,
we plan to focus on supporting automatic rewriting with
flexible security policy specifications.

Acknowledgement
The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions on the work.
This project was supported in part by NSF grant CNS-
1717028.

References
[1] AFONSO, V., BIANCHI, A., FRATANTONIO, Y., DOUPÉ, A.,

POLINO, M., DE GEUS, P., KRUEGEL, C., AND VIGNA, G. Going
native: Using a large-scale analysis of android apps to create a
practical native-code sandboxing policy. In Proc. of NDSS (2016).

[2] AHO, A. V., GAREY, M. R., AND ULLMAN, J. D. The transitive
reduction of a directed graph. SIAM Journal on Computing (1972),
131–137.

[3] ALI-GOMBE, A., AHMED, I., RICHARD III, G. G., AND ROUSSEV,
V. AspectDroid: Android app analysis system. In Proc. of CO-
DASPY (2016).

[4] ALLIX, K., BISSYANDÉ, T. F., KLEIN, J., AND LE TRAON, Y. An-
drozoo: Collecting millions of android apps for the research com-
munity. In Proc. of MSR (2016).

[5] ARP, D., SPREITZENBARTH, M., HÜBNER, M., GASCON, H.,
RIECK, K., AND SIEMENS, C. Drebin: Effective and explainable
detection of Android malware in your pocket. In Proc. of NDSS
(2014).

[6] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A.,
KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL, P. Flow-
Droid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In Conference on Program-
ming Language Design and Implementation (PLDI) (2014).

[7] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. PScout:
analyzing the Android permission specification. In Proc. of CCS
(2012).

[8] BANERJEE, A., LIVSHITS, B., NORI, A. V., AND RAJAMANI, S. K.
Merlin: Specification inference for explicit information flow prob-
lems. In Proc. of PLDI (2009).

[9] BASTANI, O., ANAND, S., AND AIKEN, A. Interactively verifying
absence of explicit information flows in Android apps. In Proc. of
OOPLSA (2015).

[10] BOSU, A., LIU, F., YAO, D. D., AND WANG, G. Collusive data
leak and more: Large-scale threat analysis of inter-app communi-
cations. In Proc. of AisaCCS (2017).

[11] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T., SADEGHI,
A.-R., AND SHASTRY, B. Towards taming privilege-escalation
attacks on Android. In Proc. of NDSS (2012).

[12] CAI, H., MENG, N., RYDER, B., AND YAO, D. DroidCat: Effec-
tive android malware detection and categorization via app-level
profiling, 2018.

[13] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D. An-
alyzing inter-application communication in Android. In Proc. of
MobiSys (2011).

[14] DAVIS, B., AND CHEN, H. RetroSkeleton: Retrofitting Android
Apps. In Proc. of MobiSys (2013).

[15] DAVIS, B., SANDERS, B., KHODAVERDIAN, A., AND CHEN, H. I-
ARM-Droid: A rewriting framework for in-app reference monitors
for Android applications. Proc. of MoST (2012).

[16] ELISH, K., CAI, H., BARTON, D., YAO, D., AND RYDER, B. Identi-
fying mobile inter-app communication risks, 2018.

[17] ELISH, K. O., SHU, X., YAO, D. D., RYDER, B. G., AND JIANG, X.
Profiling user-trigger dependence for Android malware detection.
Computers & Security (2015), 255–273.

[18] ELISH, K. O., YAO, D. D., RYDER, B. G., AND JIANG, X. A static
assurance analysis of Android applications. In Technical Report.,
Department of Computer Science (2013).

[19] ENCK, W., GILBERT, P., HAN, S., TENDULKAR, V., CHUN, B.-
G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH, A. N.
TaintDroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS) (2014).

[20] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In Proc. of CCS (2009).

[21] FRATANTONIO, Y., BIANCHI, A., ROBERTSON, W., EGELE, M.,
KRUEGEL, C., KIRDA, E., VIGNA, G., KHARRAZ, A., ROBERTSON,
W., BALZAROTTI, D., ET AL. On the security and engineering im-
plications of finer-grained access controls for Android developers
and users. In Proc. of DIMVA (2015).

[22] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H. An-
droidLeaks: Automatically detecting potential privacy leaks in
Android applications on a large scale. In Proc. of Trust and
Trustworthy Computing (2012).

[23] GORDON, M. I., KIM, D., PERKINS, J., GILHAM, L., NGUYEN, N.,
AND RINARD, M. Information-flow analysis of Android applica-
tions in DroidSafe. In Proc. of NDSS (2015).

[24] KIM, D., NAM, J., SONG, J., AND KIM, S. Automatic patch
generation learned from human-written patches. In Proc. of ICSE
(2013).

[25] LE GOUES, C., DEWEY-VOGT, M., FORREST, S., AND WEIMER, W.
A systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each. In Proc. of ICSE (2012).

[26] LI, L., BARTEL, A., BISSYANDÉ, T. F., KLEIN, J., LE TRAON, Y.,
ARZT, S., RASTHOFER, S., BODDEN, E., OCTEAU, D., AND MC-
DANIEL, P. IccTA: Detecting inter-component privacy leaks in
android apps. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1 (2015).

[27] LIU, F., CAI, H., WANG, G., YAO, D., ELISH, K. O., AND RYDER,
B. G. MR-Droid: A scalable and prioritized analysis of inter-app
communication risks. In Proc. of MoST (2017).

[28] LONG, F., AND RINARD, M. Automatic patch generation by
learning correct code. In Proc. of POPL (2016).

[29] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. CHEX: statically
vetting Android apps for component hijacking vulnerabilities. In
Proc. of CCS (2012).

[30] OCTEAU, D., JHA, S., DERING, M., MCDANIEL, P., BARTEL, A.,
LI, L., KLEIN, J., AND LE TRAON, Y. Combining static analysis
with probabilistic models to enable market-scale Android inter-
component analysis. In Proc. of POPL (2016).

14

[31] PENG, H., GATES, C., SARMA, B., LI, N., QI, Y., POTHARAJU, R.,
NITA-ROTARU, C., AND MOLLOY, I. Using probabilistic genera-
tive models for ranking risks of Android apps. In Proc. of CCS
(2012).

[32] RAHAMAN, S., XIAO, Y., AFROSE, S., SHAON, F., TIAN, K.,
FRANTZ, M., KANTARCIOGLU, M., AND YAO, D. D. Crypto-
Guard: High precision detection of cryptographic vulnerabilities
in massive-sized java projects. In Proc. of CCS (2019).

[33] RASTHOFER, S., ARZT, S., AND BODDEN, E. A machine-learning
approach for classifying and categorizing Android sources and
sinks. In Proc. of NDSS (2014).

[34] REYNAUD, D., SONG, D. X., MAGRINO, T. R., WU, E. X., AND
SHIN, E. C. R. FreeMarket: Shopping for free in Android applica-
tions. In Proc. of NDSS (2012).

[35] SOTERIS DEMETRIOU, WHITNEY MERRILL, W. Y. A. Z., AND
GUNTER, C. A. Free for all! assessing user data exposure to
advertising libraries on Android. In Proc. of NDSS (2016).

[36] TAM, K., FEIZOLLAH, A., ANUAR, N. B., SALLEH, R., AND CAV-
ALLARO, L. The evolution of android malware and android
analysis techniques. In Proc. of ACM Computing Surveys (CSUR)
(2017).

[37] TIAN, K., TAN, G., YAO, D., AND RYDER, B. ReDroid: Prioritizing
data flows and sinks for app security transformation. In Proc.
of FEAST, collocated with the ACM Conference on Computer and
Communications Security (CCS) (2017).

[38] TIAN, K., YAO, D. D., RYDER, B. G., AND TAN, G. Analysis of
code heterogeneity for high-precision classification of repackaged
malware. In Proc. of MoST (2016).

[39] WEI, F., ROY, S., OU, X., ET AL. AmanDroid: A precise and gen-
eral inter-component data flow analysis framework for security
vetting of android apps. In Proc. of CCS (2014).

[40] WEIMER, W., NGUYEN, T., LE GOUES, C., AND FORREST, S. Au-
tomatically finding patches using genetic programming. In Proc.
of ICSE (2009).

[41] WÜCHNER, T., OCHOA, M., AND PRETSCHNER, A. Malware
detection with quantitative data flow graphs. In Proc. of AsiaCCS
(2014).

[42] WUCHNER, T., OCHOA, M., AND PRETSCHNER, A. Robust and
effective malware detection through quantitative data flow graph
metrics. In Proc. of DIMVA (2015).

[43] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practical policy
enforcement for Android applications. In Proc. of USENIX Security
(2012).

[44] ZHANG, M., AND YIN, H. AppSealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking
attacks in Android applications. In Proc. of NDSS (2014).

[45] ZHOU, Y., AND JIANG, X. Dissecting Android malware: Charac-
terization and evolution. In Proc. of IEEE (S&P) (2012).

Ke Tian is a PhD candidate in Department of Computer
Science at Virginia Tech, Blacksburg. He received his bach-
elor degree majoring information security from University
of Science and Technology of China in 2013. He received the
National Scholarship of China in 2012. His research interests
is in Cybersecurity, Mobile security and machine learning.

Daphne Yao is an associate professor of computer sci-
ence at Virginia Tech. In the past decade, she has been work-
ing on designing and developing data-driven anomaly de-
tection techniques for securing networked systems against
stealthy exploits and attacks. Her expertise also includes
mobile security. Dr. Yao received her Ph.D. in Computer
Science from Brown University.Dr. Yao is an Elizabeth and
James E. Turner Jr. ’56 Faculty Fellow and L-3 Faculty Fel-
low. She received the NSF CAREER Award in 2010 for her
work on human-behavior driven malware detection, and the
ARO Young Investigator Award for her semantic reasoning
for mission-oriented security work in 2014. She has several
Best Paper Awards (e.g., ICNP ’12, CollaborateCom ’09, and
ICICS ’06) and Best Poster Awards (e.g., ACM CODASPY
’15). She was given the Award for Technological Innovation
from Brown University in 2006. She held multiple U.S.
patents for her anomaly detection technologies.Dr. Yao is
an associate editor of IEEE Transactions on Dependable and
Secure Computing (TDSC). She serves as PC members in
numerous computer security conferences, including ACM
CCS. She has over 75 peer-reviewed publications in major
security and privacy conferences and journals.

Dr. Gang Tan is the James F. Will Career Development
Associate Professor in the Department of Computer Science
and Engineering at the Pennsylvania State University, Uni-
versity Park, PA. He leads the Security of Software (SOS)
Lab. His research is at the interface between computer
security, programming languages, and formal methods. He
received his bachelors degree in Computer Science with
honors from Tsinghua University in 1999 and his Ph.D.
degree from Princeton University in 2005. He has received
an NSF CAREER award, two Google Research Awards, and
a Francis Upton Graduate Fellowship. He is a member of
IEEE and ACM.

Dr. Barbara G. Ryder
J. Byron Maupin Professor Emerita of Engineer-

ing, Department of Computer Science, Virginia Tech
http://people.cs.vt.edu/ ryder

Dr. Barbara G. Ryder is a emerita faculty member in the
Department of Computer Science at Virginia Tech, where
she held the J. Byron Maupin Professorship in Engineering.
She received her A.B. degree in Applied Mathematics from
Brown University (1969), her Masters degree in Computer

15

Science from Stanford University (1971) and her Ph.D. de-
gree in Computer Science at Rutgers University (1982). From
2008-2015 she served as Head of the Department of Com-
puter Science at Virginia Tech, and retired on September
1, 2016. Dr. Ryder served on the faculty of Rutgers from
1982-2008. She also worked in the 1970s at AT&T Bell Lab-
oratories in Murray Hill, NJ. Dr. Ryder’s research interests
on static/dynamic program analyses for object-oriented and
dynamic programming languages and systems, focus on
usage in practical software tools for ensuring the quality
and security of industrial-strength applications.

Dr. Ryder became a Fellow of the ACM in 1998, and
received the ACM SIGSOFT Influential Educator Award
(2015), the Virginia AAUW Woman of Achievement Award
(2014), and the ACM President’s Award (2008). She received
a Rutgers School of Arts and Sciences Computer Science
Distinguished Alumni Award (2016), was named a CRA-
W Distinguished Professor (2004), and was given the ACM
SIGPLAN Distinguished Service Award (2001). Dr. Ryder
led the Department of Computer Science team that tied na-
tionally for 2nd place in the 2016 NCWIT NEXT Awards.She
has been an active leader in ACM (e.g., Vice President 2010-
2012, Secretary-Treasurer 2008-2010; ACM Council 2000-
2008; General Chair, FCRC 2003; Chair ACM SIGPLAN
(1995-97)). She serves currently as a Member of the Board
of Directors of the Computer Research Association (2014-
2020,1998-2001). Dr. Ryder is an editorial board member of
ACM Transactions on Software Engineering Methodology
and has served as an editorial board member of ACM Trans-
actions on Programming Languages and Systems, IEEE
Transactions on Software Engineering, Software: Practice
and Experience, and Science of Computer Programming.

Dr. Ryder led the Department of Computer Science at
Virginia Tech team that tied nationally for 2nd place in the
2016 NCWIT NEXT Awards. She was a founding member
of the NCWIT VA/DC Aspirations in Computing Awards.
Dr. Ryder has advised 16 Ph.D. and 3 M.S. students to
completion of their theses; she has supervised the research
of 4 postdocs and more than 30 undergraduate researchers
at Rutgers and Virginia Tech.

Declaration of interests
The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

