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Abstract. In this paper, we first present a private distributed scalar product proto-
col that can be used for obtaining trust values from private recommendations. Our
protocol allows Alice to infer the trustworthiness of Bob based on what Alice’s
friends think about Bob, and Alice’s confidence in her friends. In addition, the
private information of Alice and her friends are not revealed during the compu-
tation. We also propose a credential-based trust model where the trustworthiness
of a user is computed based on his or her affiliations and role assignments. The
trust model is simple to compute, yet it is scalable as it classifies large groups of
users.
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1 Introduction

Conventional access decisions in stand-alone systems are usually made based on the
identity of the entity requesting a resource. By comparison, in open systems such as the
Internet, this approach becomes less effective. The main reason is that there is no central
authority that can make access decisions. Thus, the resource owner and the requester
typically belong to different security domains administrated by different authorities and
are unknown to each other. For example, Alice is holding a student credential from an
organizationA, but Bob, the resource owner, may know nothing aboutA in terms of
its trustworthiness, etc. Therefore, there is a strong needfor designing a flexible trust
establishment model.

Reputation or trust models [9, 25] provide an open, flexible,and dynamic mecha-
nism for trust establishment, where the requester does not belong to the resource owner.
Trust models have applications in distributed systems suchas peer-to-peer networks, e-
commerce applications such as ebay, or in resource-sharingsystems such as Grid com-
puting. Trust models are typically built on information such as recommendations and
previous experiences of individuals. Various algorithms have been proposed to evaluate
trust values [7, 39], in particular how transferred trust are computed.



In this paper, we attempt to address two aspects of computational trust models:(1)
how to protect the privacy of personal opinions during computation, and(2) how to
design a scalable computational trust model.

In computational trust models, the recommendations on the trustworthiness of users
are usually assumed to be public. However, recommendationsrepresent one’s personal
opinions of other entities, and are usually consideredsensitive. For example, Bob on
ebay has bad experiences doing business with Paul, but, he does not want to publish
his negative recommendation on Paul. Alice, who has not dealt with Paul previously,
would like to use Bob and others’ recommendations to evaluate Paul’s trustworthiness.
In the meantime, Alice has her ownprivateevaluations on Bob and others, which give
weights to individual recommendation (e.g., Alice knows and trusts Bob, so Bob’s rec-
ommendation has a higher weight.) The problem is how to enable Alice to compute the
weighted recommendation on Paul without disclosing everyone’s sensitive parameters.
We formalize this problem as a secure multi-party computation of scalar product, and
present an efficient protocol for solving it.

This paper also describes an approach to improve the scalability of trust and reputa-
tion models. Ideally, a trust model should be able to accurately and efficiently classify
a group of users. In trust management applications with a large number of users, such
as Shibboleth [34], the trustworthiness of individual users becomes less important if the
resource owner knows the home organization of the individual. For example, if the user
is a professor from a reputable college, then he or she is likely to be trustworthy. We
aim to improve the scalability of the typical grass-root approach of building trust. Our
approach takes advantage of the pre-existing organizational infrastructure, in particu-
lar the credential-based administration model. The trustworthiness of an individual is
deduced from her digital credentials and the issuers’ trustworthiness.

1.1 Our Contributions

The contributions of this paper are summarized as follows.

1. We present a private multi-party computation protocol for computing weighted trust
values. The problem is forA to infer the trust value of an unknown entityX based
on what other entities think aboutX together withA’s confidence in these entities.
In a world where there is no privacy concern or there is a trusted third-party, the
problem can be solved by computing the scalar product of two vectors – one vector
representingA’s confidence values for a set of entities, and the other vector rep-
resenting recommendations of these entities onX . In real life, this information is
usually considered sensitive, e.g.,B may not want to disclose that he does not trust
X at all, andA hopes to conceal the fact that her confidence inB is low. Private
two-party scalar product protocols are available [1, 16, 40]. However, they are not
suitable for our problem, where one of the vectors in the computation is distributed
among multiple entities. We design an efficient private multi-party computation
protocol for scalar products where individual values of a vector can have different
owners. The sensitive information of all parties is not revealed (except the final
scalar product).



2. We propose a credential-based trust model for inferring trustworthiness in decen-
tralized environments. Our credential-based trust model not only simplifies and
scales the decision-making process, but also improves the reliability of computed
trust scores by using role certificates. We describe how to compute trust values from
multiple credentials, delegation credentials, and from peers’ recommendations. Our
model can also be used for computing point values in the existing point-based au-
thorization model.

3. We also describe a location-query system for giving fuzzylocation information
based on the trustworthiness of the query issuer. This system is a practical ap-
plication of the point-based authorization model, and demonstrates the ability to
give flexible yet confident trust verdicts in open systems. Location-aware applica-
tions are made popular by the increasing deployment of sensor networks, RFID,
and GPS-enabled cellphone networks. Our point-based authorization has general
applications in these systems for protecting privacy information in a flexible yet
controlled fashion.

Outline of the paper. A private multi-party computation protocol for distributed scalar
products is presented in Section 2. This protocol supports efficient and privacy-preserving
computation of trust values. Our credential-based trust model is introduced in Section 3.
In Section 4, we describe how our trust model can be integrated with the existing point-
based trust management model. In Section 5, we present an application of point-based
trust management to the location query problem for sensor networks. Related work is
described in Section 6. Finally, future work is given in Section 7.

2 Private Distributed Scalar Product Protocol

In this section, we define, construct, and analyze the private distributed scalar product
protocol. The private distributed scalar product protocolhas applications in privacy-
preserving data mining problems. In our credential-based trust model in Section 3.2,
we show how it is used to privately compute trust values from peers’ recommendations.

2.1 Definitions

In what follows, we define that all arithmetic is done inZm for somem. A private
distributed scalar product protocol is to computeX ·Y , whereX = (x1, x2, . . . , xn) ∈
Z

n
m andY = (y1, y2, . . . , yn) ∈ Z

n
m are vectors of lengthn.

The protocol is run byl numbers of players where1 ≤ l ≤ 2n, andxi andyi are
disjointly partitioned among the players. That is, each player knows one or more of the
elements in the vectors, and a vector is known by one and only one player. In a central-
ized case wherel = 1, the problem is reduced to trivial scalar product computation. If
l = 2, i.e. a two-party private computation problem, one can use existing private scalar
product protocols [1, 16, 40]. If there are2n players, each party knows only one element
in X or Y . The goal of the protocol is for the players to jointly computeX · Y without
disclosing each own’s private information, i.e.,xi or yi values. The security of the pro-
tocol can be intuitively thought of as players do not gain non-negligible knowledge of



others’ private information (besides the final scalar product). In particular, the property
should hold even if players collude. The security of the protocol is further analyzed in
Section 2.4.

For our trust model in Section 3, we are interested in a specific scenario withn + 1
players: Alice wants to compute the point value for an unknown entityE. She knows
n entitiesB1, B2, . . . , Bn, and Alice’s point value for entityBi is xi. Each entityBi

knows entityE, and has assigned pointyi to E, respectively. Alice andB1, B2, . . . , Bn

jointly computeX · Y , which is given to Alice at the end of the protocol, but not to any
of the Bis. We present our private distributed scalar product protocol for this special
case. The protocol can be easily generalized to cases wherel is anywhere between 3
and2n, wheren is the length of the vector.

2.2 Building Blocks

Our private distributed scalar product protocol uses the homomorphicencryption scheme
and a private multi-party summation protocol.

Homomorphic Encryption A homomorphic encryption scheme has three functions
(Gen, Enc, Dec), whereGen generates a private keysk and a public keypk, Enc
andDec are encryption and decryption functions, respectively. The encryption function
Enc is said to be homomorphic, if the following holds:Encpk(x; r) · Encpk(y; r′) =

Encpk(x + y; r · r′), wherex andy denote plaintext messages andr andr′ denote

random strings. Another property of such a scheme is thatEncpk(x; r)y = Encpk(x ·

y; ry). This means that a party can add encrypted plaintexts by doing simple com-
putations with ciphertexts, without having the private key. The arithmetic performed
under the encryption is modular, and the modulus is part of the public parameters for
this system. Homomorphic schemes are described in [11, 30].We utilize homomorphic
encryption schemes that are semantically secure. A homomorphic scheme is calledse-
mantically securewhen a probabilistic polynomial-time adversary cannot distinguish
between random encryptions of two elements chosen by herself.

Private Multi-Party Summation Protocol Our protocol also uses an efficient private
multi-party summation protocol, which was presented by Atallah et al. [3]. Their pro-
tocol is to maken parties, each with a numberVi, cooperate tosimultaneouslyfind out∑n

i=1
Vi without revealing to each other anything other than the answer. To achieve this,

each party chooses a random value, which is used to hide the input. The intermediate
sum is additively split among the participants.

The summation protocol by Atallahet al. [3] is briefly described as follows. Every
party i has a private valueVi. Partyi chooses a random numberRi. Every party2i
gives to2i + 1 hisV2i + R2i, then every2i + 1 gives to2i hisR2i+1. Let us denoteAi

as the sumVi + Ri for each partyi. The odd (resp., even)-numbered parties together
compute the sumA + R (resp.,R), whereA =

∑n

i=1
Ai andR =

∑n

i=1
Ri. Note that

to compute the sum, the protocol should not let each party send his share in the clear
to all other parties, which is obviously insecure. The protocol in [3] gives a non-trivial



way to do this by requiring the participants to compute a randomized private sum. We
refer readers to the literature for details of summation procedure. Finally, the odd (resp.,
even) simultaneously exchange their quantities to obtainA. We use their protocol as a
black box, and refer readers to the literature for more details [3].

2.3 Protocol Description

Our private distributed scalar product protocol is shown inFigure 1. Alice’s input of
the protocol is a private vectorX . Each partyBi (for 1 ≤ i ≤ n) has a private value
yi. At the end of the protocol, the scalar productX · Y is learned by Alice or by every
participant, whereY = (y1, . . . , yn).

Alice encrypts each elementxi of her vectorX with her public key in homomorphic
encryption. The ciphertextci is sent toBi, respectively. BecauseBi does not know
Alice’s private key, Alice’s value is safe. Because of the properties of homomorphic
encryption, entityBi is able to compute the ciphertext corresponding toxiyi, even
though he does not knowxi. The resulting ciphertext iswi in Figure 1. To hideyi, Bi

computes the ciphertextw′

i corresponding toxiyi − si, wheresi is a random number.
Alice receives ciphertextw′

i from eachBi, and computes the product of allw′

is, which is
decrypted toX ·Y −

∑n
i=1

si. Next, all ofBis carry out a private multi-party summation
protocol that computes

∑n

i=1
si. At the end of the summation protocol, everyBi learns

the sum. Alice obtains the sum fromBis, and computesX · Y without learning the
individualyi values.

PRIVATE INPUTS: Private vectorX = (x1, . . . , xn) ∈ Z
n
m by Alice; private valuesy1 by

entityB1, . . ., yn by entityBn, whereyi ∈ Zm for all i ∈ [1, n].
PRIVATE OUTPUTS: Alice learnsX · Y mod m, wherem is a public parameter.

1. Setup phase. Alice does: Generate a private and public keypair (sk, pk). Sendpk to
all Bi.

2. Alice does fori ∈ {1, . . . , n}: Generate a random new stringri. Sendci =
Encpk(xi; ri) to Bi.

3. Bi does: Setwi = c
yi

i modm. Generate a random plaintextsi and a random nonce
r′i. Send to Alicew′

i = wi · Encpk(−si; r
′

i).

4. Alice does: Compute the product of ciphertextw′

is asΠn
i=1w

′

i mod m. Use her
private keysk to decrypt the product, and obtain the partial resultSA = X · Y −
Pn

i=1
si.

5. All Bis, each withsi, carry out a private multi-party summation protocol with their
inputs (described in 2.2). At the end of that protocol, eachBi obtainsSB =

Pn

i=1
si.

6. Alice does: ObtainSB from (any of the)Bis. ComputeX · Y = SA + SB .

Fig. 1. Private Distributed Scalar Product Protocol.m is a public parameter of the homomorphic
encryption scheme.



Our private distributed scalar product protocol is based onthe private two-party
scalar product protocol by Goethalshet al. [16], where each party has a vector and the
protocol outputs the scalar product result of the two vectors in a split form. That is,
the scalar product result is split between the two parties, and equals to the sum of two
shares. The concept of shared private computation can also be found in [1, 15]. A variant
of our protocol allows all participating parties to learn the scalar product resultX · Y .
Alice with SA and allBis, each withsi, carry out a private multi-party summation
protocol with their inputs. Our analysis is based on the protocol in Figure 1.

Operation Scalar Product Phase Summation Phase Total
Computation (Alice) O(n) homomorphic op. O(1) O(n) homomorphic op.

Communication (Alice) O(n) O(1) O(n)
Computation (Bi) O(log yi) homomorphic op. O(1) O(log yi) homomorphic op.

Communication (Bi) O(1) O(1) O(1)
Table 1.Computation and communication complexities of the privatedistributed scalar product
protocol. We denote withn the length of Alice’s vectorX. The logarithmic factor is due to using
multiplications to compute exponentiation in step 3.

2.4 Analysis of the Protocol

The correctness of the protocol is obvious. Alice obtains fromBi (for all i ∈ [1, n]) an
encryption ofxiyi − si. Alice multiplies then ciphertexts, and decrypts to obtain the
sum

∑n

i=1
xiyi − si. Once Alice obtains

∑n

i=1
si, she computesX · Y =

∑n

i=1
xiyi.

The security and efficiency of our private multi-party protocol for distributed scalar
product are analyzed.

The security of our private multi-party scalar product protocol is based on the se-
curity of the private two-party scalar product protocol [16] and the private multi-party
summation protocol [3]. In general, the multi-party protocol among players is secure
when the privacy and correctness are guaranteed for all players. It is said that a protocol
protects privacy when the information that is leaked by the distributed computation is
limited to the information that can be learned from the designated output of the com-
putation [31]. In our problem, Alice’s private vectorX and each entityBi’s private
valueyi are not leaked to each other, besides the scalar product. Note that in almost
all existing private scalar product solutions, one player can construct a system of linear
equations based on the specification of the protocol, and solve it for the secret values.

Our security is in the semi-honest model, where it is assumedthat all players follow
the protocol, but they are also curious: that is, they may store all exchanged data and
try to deduce information from it. One challenge in designing the multi-party scalar
product protocol is to prevent collusions among players. Inparticular, during the step
of summation, Alice may attempt to collude with a subset of playersBis to discover
the private values of other players.

As in almost all private multi-party protocols, we assume that each party inputs
his or her true private values. Providing skewed values during computation can result in



inaccurate results, and wasting the computation power and bandwidth of all participants
including the dishonest party. In addition, the effect of providing skewed intermediate
value by a participant can be achieved by raising or loweringhis or her own input. This
issue is standard in multi-party protocols (both semi-honest and malicious models).
SupposeA wants to compute the trustworthiness ofC with help of B1, . . . , Bn, and
supposeBi is a friend ofC, Bi may modify the output of the protocol by raisingsi in
Figure 1. As a result,A gets a higher value forC. However,Bi can achieve the same
effect by choosing a different input to begin with. Therefore, this type of attacks is not
considered in multi-party protocols including ours. It is worth mentioning that once
detected, this type of behaviors could be folded back into the reputation of participants,
which can provide incentives for being honest during the computation.

Because of the intrinsic nature of the problems considered,even if the protocol is
secure in the malicious model (discussed later), multi-party computation such as ours is
still vulnerable to probing attacks. For example, ifA wants to learnBi’s private value
yi, A can engage the protocol with inputX = (0, . . . , 0, 1, 0, . . . , 0) by setting only the
i-th entry to be one. After the protocolA learnsX ∗ Y = yi, which is the private value
of Bi.

The security of our protocol is summarized in the following theorem.

Theorem 1. Assume that(Gen, Enc, Dec) is a semantically secure homomorphic public-
key cryptosystem. The private distributed scalar product protocol presented in this sec-
tion is secure in the semi-honest model. Alice’s privacy is guaranteed when for all
i ∈ [1, n], entityBi is a probabilistic polynomial-time machine. Also, for alli ∈ [1, n],
Bi’s privacy is information-theoretical.

Proof (sketch):Each entityBi only sees a random ciphertext from Alice, for whichBi

cannot guess the ciphertext. This is because of the semanticsecurity of the homomor-
phic encryption scheme. Hence,Bi cannot guess Alice’s valuexi.

During the summation protocol, eachBi only sees random values exchanged. Hence,
Bi cannot guess the random secretsj of Bj for all j 6= i.

On the other hand, Alice only sees (1) random valuexiyi − si, (2) the sum of all
si, and (3) the final computation scalar productX · Y . She does not gain additional
information aboutY besides the final scalar product. In addition, the protocol prevents
collusions among Alice and a subsetD of Bis to discover privateyj value ofBj for
Bj /∈ D, because the summation protocol guarantees that allBis learn the sum simul-
taneously. Thus, Alice obtains no information about anyBi except the scalar product
X · Y , and eachBi obtains no information about Alice and entityBj for all j 6= i. �

The overall computation and communication complexities ofour protocol are the
same as the private two-party scalar product protocol by Goethalset al.[16]. The private
multi-party summation protocol is efficient, as it does not require any type of encryp-
tion schemes. The summation step does not introduce significant overhead. Details of
complexities are summarized in Table 1.

Security in malicious modelMalicious adversaries, unlike semi-honest ones, can
behave arbitrarily without following the protocol. They may refuse to participate the
protocol, abort the protocol without finishing it, and tamper with intermediate values.
Any protocol secure against honest-but-curious adversaries can be modified to a proto-
col that is secure against malicious adversaries using standard zero-knowledge proofs



showing that all parties follow the protocol. At each step ofthe protocol, each party
uses their transcripts and zero-knowledge proofs to convince the other parties that they
have followed the protocol without cheating. We do not describe the details of how this
transformation is done in this paper.

3 Credential-Based Trust Model

In this section, we present a simple credential-based trustmodel that is useful for
the trust management in distributed environments. The mainidea is to convert role-
based credentials and related information into quantitative trustworthiness values of a
requester, which is used for making authorization decisions. Quantitative authorization
policies can allow fine-tuned access decisions instead of binary (allow or deny) verdicts,
and provide more diversified access options for requesters.In addition, quantitative au-
thorization enables providers to correlate the quality of service with the qualifications
of requests (e.g., more rewards or higher resolution with higher trustworthiness). This
approach utilizes and leverages existing credential and role-based management infras-
tructure for autonomous domains (e.g., [37, 45]) and improves the accuracy of trustwor-
thiness prediction.

Our private multi-party scalar product protocol in the previous section can be used
to compute trust values from recommendations in Section 3.2.

Terminology: In our model, we define theadministratorof a role as the organiza-
tion that creates and manages the role. If a role credential of an entityD is signed and
issued by the administrator of the role, that role is said to be anaffiliated roleof D (this
type of role is usually obtained through the affiliation withan organization, and thus
the name). If a role credential ofD is instead issued through delegation and signed by
entities other than the administrator of the role, that roleis called adelegated roleof D.
We define anentity to be an organization or an individual. An entity may issue creden-
tials. Also, an entity may have one or more affiliated roles ordelegated roles, which
are authenticated by role credentials. Anaffiliated role credentialis the credential for
an affiliated role, and is signed by the administrator of the role. Similarly, adelegated
role credentialis the credential for proving a delegated role. Aprivilegecan be a role
assignment or an action on a resource. A roler administered by entityA is denoted
asA.r. A role defines a group of entities who are members of this role.

3.1 Definitions in Credential-Based Trust Model

A trust value in the credential-based trust model represents what an entity thinks about
the trustworthiness of another entity or a role in another entity. More specifically, trust
valuet(A, B) in the credential-based trust model represents what entityA thinks about
the trustworthiness of entityB; trust valuet(A, B.r) in the credential-based trust model
represents what entityA thinks about the trustworthiness of roleB.r administered by
entity B. For example, a Grid Computing facilityGCLab assigns trust values to types
of users, such as roleprofessorand rolestudentin a universityU , and roleresearcher
from a research centerC. When a user holding a certain role credential requests for
access to the grid computing facility, his or her privilegesare specified based on the



trust value of the role. Note that the credential-based trust model is different from exist-
ing trust models that generate rating certificates, which are signed certificates of one’s
trustworthiness generated by one’s peers [32].

Ideally, an entityA maintains a trust value for each role in organizationB. For
example,GCLab gives different trust value to rolestudentand roleprofessorin a uni-
versity. Hence, a requester with aprofessorrole credential may be granted a different
level of access privileges from a requester with astudentrole credential.

Definition 1. If an entityA gives a roleB.r in B a trust valuet(A, B.r), then any
individual who has a valid role credential of roleB.r issued byB has the trust value
t(A, B.r).

Trust values can be derived from previous interaction experiences and/or others’
recommendations, and we focus on the latter. Deriving trustvalues from previous trans-
actions usually depends on specific applications, and is notdiscussed in this paper. In
what follows, we usetrust value of a credentialto mean the trust value of the credential
issuer.

3.2 Derive Trust Value From Recommendations

We describe aweighted averagemethod for an entityA to compute a trust value on
entity B or roleB.r. This computation is useful whenA does not have any previous
interaction experience withB or B.r, andA wants to combine others’ opinions ofB or
B.r in forming her trust value.

In the credential-based trust model, therecommendationby an entityE on B is
the trust valuet(E, B) thatE gives toB. A confidence valuerepresents how muchA
trusts the judgement of a recommender, and is defined as the trust value ofA on the
recommender.

Above definitions mean that recommendations are weighted byA’s confidence on
the recommenders. Formally, we define the weighted average computation of trust value
as follows. We denoten as the number of recommenders, andEi represents thei-th
recommender. Let MAXTRUST be the public upper bound of all trust values. Without
loss of generality, we assume a trust value is non-negative.We assume thatA has al-
ready obtained her trust valuest(A, E1), t(A, E2), . . ., t(A, En) on the recommenders.
We also assume that each of the recommendersEi has formed her trust valuet(Ei, B)
on the target entityB. (In case no one in the system knows about entityB, a default
trust value can be assigned toB to indicate this situation.) The formula for computing
t(A, B) is shown as follows, where weightw(A, Ei) = t(A, Ei)/MAX TRUST.

t(A, B) =
1

n

n∑

i=1

w(A, Ei)t(Ei, B) (1)

Valuew(A, Ei) represents the weight ofEi’s recommendation (trust value) onB
for A. Variants of weighted average computation have been used inother reputation
systems, such as ordered weighted average [41]. The above description also applies
when the target to be evaluated is a role, for exampleB.r, instead of an entity.



Application of private distributed scalar product protoco l. Equation (1) is useful for
A only when all the trust valuest(Ei, B) are available. However, trust valuet(Ei, B)
is private information ofEi, who has the incentive to hide it, especially whenEi thinks
negatively aboutB. Similarly, A may consider her trust valuest(A, Ei) sensitive too.
The problem is how to compute the weighted average in (1) without leaking the private
information of each entity. Our protocol for private multi-party scalar product in Sec-
tion 2 solves this problem and satisfies the privacy requirement. Note that our model
is not based on the assumption of two degrees of separation betweenany two entities,
that is, we do not need to assume that a new entity is known by anexisting peer. If an
entity is not known to the community, it is initialized with trust value zero, which may
increase provided that the entity behaves well with other peers. Recall that a trust value
can be based on previous experience of interactions with an entity.
Combining trust values for access.If a requester presents multiple role credentials,
then the trust values of the credentials are to be combined. For example, one simple
method is to sum the trust values. This means that the requester with multiple creden-
tials of low trust values can gain the same access privilegesas a requester with one
credential of a high trust value. This combination method isintuitive and is used in
point-based trust management model [44].

Delegation [5, 27, 37] is important for transferring trust in decentralized environ-
ments. Associating trust values with delegation credentials is different from role cre-
dentials because the values should not only depend on the initial credential issuer, but
also the intermediate delegators’s trustworthiness. Our trust model can be generalized
to support delegation credentials. Due to space limit, we omit this description and refer
readers to the full version of our paper.

4 Integration With Point-Based Trust Management

Our proposed private multi-party protocol and trust model are useful for general access
control in a decentralized environment. In this paper, we describe how it can be used for
deriving point values in the existing point-based trust management model [44], which
was proposed for the privacy protection of sensitive information in open environments.
Similar concepts of risk management and tokenized trust system can be found in a
recent JASON report [29]. We briefly introduce the point-based model.

4.1 Point-Based Trust Management

In the point-based trust management model [44], the authorization policies of a resource
owner define anaccess thresholdfor each of its resources. The threshold is the mini-
mum number of points required for a requester to access that resource. For example,
accessing a medical database might require fifty points. Theresource owner also de-
fines apoint valuefor each type of credential, which denotes the number of points or
credits a requester obtains if a type of credential is disclosed. For example, a valid ACM
membership might have ten points. This means that a user can disclose his or her ACM
membership credential in exchange for ten points. (This is called a trust management
model as opposed to an access control model, because the resource owner does not



know the identities or role assignments of requestersa priori as in conventional access
control settings. )

Each user defines aprivacy scorefor each of their credentials. The privacy score
represents the inverse of the willingness to disclose a credential. For example, Alice
may give a privacy score of ten to her college ID, and give fiftyto her credit card. The
user is granted access to a certain resource if the access point threshold is met and all of
the disclosed credentials are valid. Otherwise, the accessis denied. From the requester’s
point of view, one central question is how to fulfill the access threshold while disclosing
the least amount of sensitive information.

The credential selection problem here is to determine an optimal combination of
requester’s credentials to disclose to the resource owner,such that the minimal amount
of sensitive information is disclosed and the access threshold of the requested resource
is satisfied by the disclosed credentials. A private two-party dynamic programming pro-
tocol has been proposed to solve the credential selection problem [44].

4.2 Derivation of Point Values

Existing work on point-based trust management [44] does notdescribe how point values
can be obtained or how to systematically derive points corresponding to credentials.
The credential-based trust model presented in Section 3 answers this question. Using
the described methods, a resource owner computes the trust values of credential issuers
and their roles. The resulting trust values are to be used as point values of a resource
owner in point-based trust management.

For delegation credentials presented by a requester, a resource owner can use the
trust model to compute the discounted trust value of the credential. The trust value
can only be computed exactly when the delegation credentialis revealed. However,
this information is private to the requester in the credential selection computation in
point-based trust management. To mitigate this problem, a resource owner can use an
approximate trust value during the credential selection computation, and then make
adjustments when credentials are exchanged later.

The credential-based trust model completes the description of an important aspect
in point-based authorization. Next, we give a concrete application for point-based au-
thorization in location-query systems.

5 Applications to Location Query Systems

Privacy is an important concern in systems that use presenceand other real-time user
data. Presence provides great utility, but also has the potential for abuse. Managing secu-
rity and privacy preferences in these systems can be complex. One approach to protect
the privacy is to apply distributed anonymity algorithms tosensor networks [19, 20].
Another type of solutions is to augment existing routing protocols to enhance source-
location privacy in sensor and conventional networks [23, 36].

However, these existing solutions are not suitable for several types of applications.
In many scenarios such as 911 or medical emergency, road-side emergency of a GPS-
enabled vehicle, and police enforcement agents, the location information of a subject



is critical, and should not be hidden or anonymous. Also for example, in distributed
collaboration applications such as Meeting Central [42], being able to share presence
information to trusted collaborators is desirable.

Generally, sharing presence information implies sharing sensitive personal data such
as computer activity, physical location, IM status, phone use, and other real-time at-
tributes associated with a given user. Managing the privacyof this data requires captur-
ing the user’s preferences and concerns, which are typically quite individualistic. Some
users feel comfortable sharing any personal details, but most want at least some control
over what is shared and with whom.

A presence system can provide a service that runs on behalf ofeach user, acting as
that user’s always-online proxy. Through this proxy, the user has ultimate control over
all their associated data. The proxy is resolvable based on the user’s identity, and can
expose services that can be queried by other entities in the system. One such service
provides presence querying.

Alice’s proxy chooses access decisions through a set of domain-specific entities
called advisors. Each advisor provides input on possible decision responses based on
its domain of expertise (e.g., reputation, purpose of the query, context of the exchange,
value of the requested data). These inputs are then aggregated to determine the overall
advice about a possible response. The idea is to provide a flexible mechanism that more
accurately represents a user’s decision process. Our credential-based trust model and
point-based authorization can be used to implement a flexible advisor system.

Alice’s proxy contains her policies and preferences, including the trust values of
credentials that may be used for authentication. Alice alsodefines the precision asso-
ciated with certain trust values. For example, if the trust value of the query issuer is
twenty, then she might release her location information exactly. If the trust value is five,
then she might release afuzzy interpretationof her location, for example, the build-
ing or city where she is currently. Phrased more concretely,if Alice’s closest friend,
Bob, queries about her location, a precise answer is returned. If a stranger queries her
location, nothing about Alice should be disclosed.

The reputation advisor computes the trust value of each query issuer, based on their
credential information. The trust value is then compared toAlice’s policies, and the
corresponding location result is returned. The advisors reside in Alice’s proxy that is
a tamper-resistant system in order to prevent the leaking ofprivate trust values. Note
that this model makes it easy to use the trust value not just indeciding what to share,
but in determining the system’s confidence that the right decision is made. A high trust
value represents high confidence and can be executed withoutbothering Alice. A low
trust value represents low confidence in a decision, and if low enough, may warrant
interrupting Alice to check that the right decision is beingmade for her. This confidence
metric is then feeded back into the system for use the next time a similar query from
the same entity arrives, and used to provide an aggregate sense of past confidence.

For location-query systems, the main advantages of using point-based trust man-
agement as opposed to conventional access control mechanisms are the flexibility of
making access control decisions with an arbitrary degree ofprecision and the ability
to derive some simple notion of confidence. In order to achieve the same expressive-



ness, a boolean-based access control policy would be very inefficient, as one needs to
enumerate all of the possible combinations of authorizations.

6 Related Work

Secure Multi-party Computation (SMC) was introduced in a seminal paper by Yao [43],
which contained a scheme for secure comparison. Suppose Alice (with inputa) and Bob
(with inputb) desire to determine whether or nota < b without revealing any informa-
tion other than this result (this is known asYao’s Millionaire Problem). More generally,
SMC allows Alice and Bob with respective private inputsa andb to compute a function
f(a, b) by engaging in a secure protocol for public functionf . Furthermore, the protocol
is private in that it reveals no additional information. This means that Alice (resp. Bob)
learns nothing other than what can be deduced froma (resp.b) andf(a, b). Elegant
general schemes are given in [6, 10, 17, 18] for computing anyfunctionf privately.

Besides the generic work in the area of SMC, there has been extensive work on the
privacy-preserving computation of various functions. Forexample, computational ge-
ometry [2, 12], privacy-preserving computational biology[4], and private two-party dy-
namic programming for the knapsack problem [44]. Compared to existing private scalar
product protocols [1, 16, 40], our protocol is designed for general privacy-preserving
distributed scalar product computation, where vector values are distributed among mul-
tiple players. The protocol has promising applications in the information discovery of
reputation systems. Our security is efficient, and is comparable to the private two-party
scalar product of Goethalshet al. [16].

Recently, there are also solutions for privacy-preservingautomated trouble-shooting
[21], privacy-preserving distributed data mining [22], private set operations [14, 24],
and equality tests [28]. We do not enumerate other private multi-party computation
work as their approaches are significantly different from ours.

There has been much work on the privacy-awareness for ubiquitous computing en-
vironments [19, 20, 23, 26, 35]. An existing approach to protect the location-privacy in
sensor networks is through distributed anonymity algorithms that are applied in a sensor
network, before service providers gain access to the data [19, 20]. Another category of
solutions is to augment existing routing protocols to enhance source-location privacy in
sensor and conventional networks [23, 36]. A more fine-grained approach for manag-
ing the access to location data is based on privacy-policies[26, 35], which is closer to
our solution. Using point-based authorization, we are ableto support more flexible trust
establishment mechanism without rigid boolean-based policy specifications.

Our trust model work is related to the existing work on recommendation or repu-
tation systems [7, 9, 25] in decentralized models. Trust evidences that are generated by
recommendations and past experiences have been used for trust establishment in both
ad-hoc and ubiquitous computing environments [8, 13, 33, 38]. This type of trust evi-
dence is flexible and straightforward to collect. The notionof uncheatable reputation
was proposed in recent work by Carbunar and Sion [9], who developed a reputation
mechanism that prevents untruthful reputation information using witnesses. In com-
parison, the main property of our trust model is the use of role-based organizational



infrastructure to derive trust values, which aims to improve the scalability of trust com-
putation.

7 Conclusions and Future Work

In this paper, we developed a general protocol for privacy-preserving multi-party scalar
product computation. This protocol can be used for peers to jointly compute a weighted
trust score fromprivate recommendations andprivate weights. We then presented a
simple credential-based trust model for evaluating trustworthiness based on role and
delegation credentials, and recommendations. We also described an architecture of a
location-query system for giving fuzzy location information based on the trust score of
a requester.

There are several interesting areas to explore for future work. One is to evaluate
other types of trust computation besides weighted average.For example, the ordered-
weighted-average operator allows the user to weight the input values in relation to their
relative ordering [41]. Another promising direction is to design private multi-party pro-
tocols for other desirable functionalities in a trust model. For example, an entity wants
to find out who else in the system has a similar profile of trust values as his or her
own — other entities who have similar likes and dislikes. Theproblem becomes how
to privately compute the distance between two set of trust values according to certain
metrics. As part of future works, we also plan to evaluate theeffectiveness of credential-
based trust model in answering fuzzy location queries. Thisexperimentation involves
an implementation of the point-based authorization model,the weighted scalar protocol
computation, and the comparison tests with conventional trust models.
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