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Abstract. Inthis paper, we first present a private distributed scataalyct proto-
col that can be used for obtaining trust values from privat®@mmendations. Our
protocol allows Alice to infer the trustworthiness of Bobskd on what Alice’s
friends think about Bob, and Alice’s confidence in her frienth addition, the
private information of Alice and her friends are not reveatiring the compu-
tation. We also propose a credential-based trust modeleathertrustworthiness
of a user is computed based on his or her affiliations and sdggaments. The
trust model is simple to compute, yet it is scalable as itsifees large groups of
users.
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1 Introduction

Conventional access decisions in stand-alone systemssasdiyymade based on the
identity of the entity requesting a resource. By comparigoopen systems such as the
Internet, this approach becomes less effective. The masoreis that there is no central
authority that can make access decisions. Thus, the resownger and the requester
typically belong to different security domains adminigtcby different authorities and
are unknown to each other. For example, Alice is holding destticredential from an
organization4, but Bob, the resource owner, may know nothing abéumn terms of
its trustworthiness, etc. Therefore, there is a strong fi@edesigning a flexible trust
establishment model.

Reputation or trust models [9, 25] provide an open, flexibled dynamic mecha-
nism for trust establishment, where the requester doesehon@ to the resource owner.
Trust models have applications in distributed systems aggieer-to-peer networks, e-
commerce applications such as ebay, or in resource-sharstgms such as Grid com-
puting. Trust models are typically built on information Bugs recommendations and
previous experiences of individuals. Various algorithragéehbeen proposed to evaluate
trust values [7, 39], in particular how transferred trugt eomputed.



In this paper, we attempt to address two aspects of compngtirust models(1)
how to protect the privacy of personal opinions during cotapan, and(2) how to
design a scalable computational trust model.

In computational trust models, the recommendations orrtisévtorthiness of users
are usually assumed to be public. However, recommendatpnesent one’s personal
opinions of other entities, and are usually considesewassitive For example, Bob on
ebay has bad experiences doing business with Paul, but,dserat want to publish
his negative recommendation on Paul. Alice, who has not détd Paul previously,
would like to use Bob and others’ recommendations to evalRaul’s trustworthiness.
In the meantime, Alice has her ovpmivate evaluations on Bob and others, which give
weights to individual recommendation (e.g., Alice knowd #usts Bob, so Bob’s rec-
ommendation has a higher weight.) The problem is how to enalite to compute the
weighted recommendation on Paul without disclosing evegigssensitive parameters.
We formalize this problem as a secure multi-party compaoradf scalar product, and
present an efficient protocol for solving it.

This paper also describes an approach to improve the sliglabirust and reputa-
tion models. Ideally, a trust model should be able to acelyand efficiently classify
a group of users. In trust management applications withgelaumber of users, such
as Shibboleth [34], the trustworthiness of individual sdecomes less important if the
resource owner knows the home organization of the individiea example, if the user
is a professor from a reputable college, then he or she ilylthebe trustworthy. We
aim to improve the scalability of the typical grass-roota@eh of building trust. Our
approach takes advantage of the pre-existing organiztinfrastructure, in particu-
lar the credential-based administration model. The tragtviness of an individual is
deduced from her digital credentials and the issuers’wuoighiness.

1.1 Our Contributions

The contributions of this paper are summarized as follows.

1. We present a private multi-party computation protocotfamputing weighted trust
values. The problem is fot to infer the trust value of an unknown enti based
on what other entities think aboix together withA’s confidence in these entities.
In a world where there is no privacy concern or there is aédishird-party, the
problem can be solved by computing the scalar product of #abors — one vector
representingd’s confidence values for a set of entities, and the other veeim
resenting recommendations of these entitieskorin real life, this information is
usually considered sensitive, e.§.may not want to disclose that he does not trust
X at all, andA hopes to conceal the fact that her confidenc®irs low. Private
two-party scalar product protocols are available [1, 1§, k@wever, they are not
suitable for our problem, where one of the vectors in the agsaton is distributed
among multiple entities. We design an efficient private irpdirty computation
protocol for scalar products where individual values of etgecan have different
owners. The sensitive information of all parties is not eded (except the final
scalar product).



2. We propose a credential-based trust model for inferrngtvorthiness in decen-
tralized environments. Our credential-based trust modelomly simplifies and
scales the decision-making process, but also improvestlabitity of computed
trust scores by using role certificates. We describe hownmperte trust values from
multiple credentials, delegation credentials, and froergeecommendations. Our
model can also be used for computing point values in theiegigioint-based au-
thorization model.

3. We also describe a location-query system for giving fumpation information
based on the trustworthiness of the query issuer. This reyiea practical ap-
plication of the point-based authorization model, and destrates the ability to
give flexible yet confident trust verdicts in open systemgadtimn-aware applica-
tions are made popular by the increasing deployment of seretaorks, RFID,
and GPS-enabled cellphone networks. Our point-based zdkion has general
applications in these systems for protecting privacy imfation in a flexible yet
controlled fashion.

Outline of the paper. A private multi-party computation protocol for distribdtscalar
products is presented in Section 2. This protocol suppfiitssst and privacy-preserving
computation of trust values. Our credential-based trustehis introduced in Section 3.
In Section 4, we describe how our trust model can be intedratit the existing point-
based trust management model. In Section 5, we present Hioaigm of point-based
trust management to the location query problem for senswranks. Related work is
described in Section 6. Finally, future work is given in $eef7.

2 Private Distributed Scalar Product Protocol

In this section, we define, construct, and analyze the gridetributed scalar product
protocol. The private distributed scalar product protdta$ applications in privacy-
preserving data mining problems. In our credential-basgst model in Section 3.2,
we show how it is used to privately compute trust values fremrp’ recommendations.

2.1 Definitions

In what follows, we define that all arithmetic is doneZn, for somem. A private
distributed scalar product protocol is to compiteY, whereX = (z1,z9,...,2,) €
Zy, andY = (y1,y2,...,yn) € Z7, are vectors of length.

The protocol is run by numbers of players where< [ < 2n, andz; andy; are
disjointly partitioned among the players. That is, eacly@tknows one or more of the
elements in the vectors, and a vector is known by one and o@\ptayer. In a central-
ized case wherké= 1, the problem is reduced to trivial scalar product compatatif
[ = 2, i.e. atwo-party private computation problem, one can ugsting private scalar
product protocols [1, 16, 40]. If there &2e players, each party knows only one element
in X orY. The goal of the protocol is for the players to jointly compit - Y without
disclosing each own’s private information, i.e;,0r y; values. The security of the pro-
tocol can be intuitively thought of as players do not gain-megligible knowledge of



others’ private information (besides the final scalar padun particular, the property
should hold even if players collude. The security of the @cot is further analyzed in
Section 2.4.

For our trust model in Section 3, we are interested in a sjgestnario wit + 1
players: Alice wants to compute the point value for an unkmewtity . She knows
n entities By, Bo, ..., B,, and Alice’s point value for entityB; is x;. Each entityB;
knows entityE, and has assigned poigtto F, respectively. Alice and,, Bo, ..., B,
jointly computeX - Y, which is given to Alice at the end of the protocol, but notty a
of the B;s. We present our private distributed scalar product podtfar this special
case. The protocol can be easily generalized to cases Wwiesnywhere between 3
and2n, wheren is the length of the vector.

2.2 Building Blocks

Our private distributed scalar product protocol uses thedrmorphic encryption scheme
and a private multi-party summation protocol.

Homomorphic Encryption A homomorphic encryption scheme has three functions
(Gen, Enc, Dec), whereGen generates a private kesk and a public keypk, Enc
andDec are encryption and decryption functions, respectivelg &hcryption function
Enc is said to be homomorphic, if the following hoIdSncpk(x;r) . Encpk(y; ) =

Encpk(x + y;7 - '), wherez andy denote plaintext messages andndr’ denote
random strings. Another property of such a scheme isEEhabk(a:; r)Y = Encpk(a: .

y;rY). This means that a party can add encrypted plaintexts bygdsimple com-
putations with ciphertexts, without having the private K€lge arithmetic performed
under the encryption is modular, and the modulus is part®fpihblic parameters for
this system. Homomorphic schemes are described in [11Y@®tilize homomorphic
encryption schemes that are semantically secure. A honyhiesscheme is callese-
mantically securavhen a probabilistic polynomial-time adversary cannotinigglish
between random encryptions of two elements chosen by fersel

Private Multi-Party Summation Protocol Our protocol also uses an efficient private
multi-party summation protocol, which was presented byllateet al.[3]. Their pro-
tocol is to maken parties, each with a numb&¥, cooperate t@imultaneouslyind out
>, Vi without revealing to each other anything other than the @nstie achieve this,
each party chooses a random value, which is used to hide ple ifhe intermediate
sum is additively split among the participants.

The summation protocol by Atalladt al. [3] is briefly described as follows. Every
party i has a private valu®;. Partyi chooses a random numb#&y. Every party2i
gives to2i + 1 his V5; + Ro;, then everyi + 1 gives to2i his Ro; 1. Let us denoted;
as the suni/; + R; for each partyi. The odd (resp., even)-numbered parties together
compute the suml + R (resp.,R), whereA = """ | A;andR = > | R;. Note that
to compute the sum, the protocol should not let each partgt kenshare in the clear
to all other parties, which is obviously insecure. The peotan [3] gives a non-trivial



way to do this by requiring the participants to compute a cemided private sum. We
refer readers to the literature for details of summatioredure. Finally, the odd (resp.,
even) simultaneously exchange their quantities to obfaiWe use their protocol as a
black box, and refer readers to the literature for more tef3j.

2.3 Protocol Description

Our private distributed scalar product protocol is showrrigure 1. Alice’s input of
the protocol is a private vectot. Each partyB; (for 1 < ¢ < n) has a private value
y;. At the end of the protocol, the scalar prodict Y is learned by Alice or by every
participant, wher&” = (y1,...,yn).

Alice encrypts each element of her vectorX with her public key in homomaorphic
encryption. The ciphertext; is sent toB;, respectively. BecausB; does not know
Alice’s private key, Alice’s value is safe. Because of thegarties of homomorphic
encryption, entityB; is able to compute the ciphertext corresponding:{g;, even
though he does not know;. The resulting ciphertext is; in Figure 1. To hidey;, B;
computes the ciphertext, corresponding ta;y; — s;, wheres; is a random number.
Alice receives ciphertext; from eachB;, and computes the product of als, which is
decryptedtaX-Y — "7 | s;. Next, all of B;s carry out a private multi-party summation
protocol that computes. -, s;. At the end of the summation protocol, eveylearns
the sum. Alice obtains the sum frof;s, and computeX - Y without learning the
individualy; values.

PRIVATE INPUTS: Private vectorX = (z1,...,z») € Z;, by Alice; private valueg; by
entity By, . . ., yn by entity B,,, wherey; € Z,, forall i € [1,n].
PRIVATE oUuTPUTS Alice learnsX - Y mod m, wherem is a public parameter.

1. Setup phase. Alice does: Generate a private and publip&eysk, pk). Sendpk to
all B;.

2. Alice does fori € {1,...,n}: Generate a random new string. Sendc¢; =
EnCpk(IEi; 7"7;) to B;.

3. B; does: Setw; = c¢!* modm. Generate a random plaintextand a random nonde
r;. Send to Alicew, = w; - Encpk(—si; T5).

4. Alice does: Compute the product of ciphertexts asII];w; mod m. Use he
private keysk to decrypt the product, and obtain the partial resiit = X - Y —
>isq Si-

5. All B;s, each withs;, carry out a private multi-party summation protocol witkeitt]
inputs (described in 2.2). At the end of that protocol, eB¢lobtainsSs = >"7_ si.

6. Alice does: Obtairs s from (any of the)B;s. ComputeX - Y = S4 + Ss.

Fig. 1. Private Distributed Scalar Product Protocalis a public parameter of the homomorphic
encryption scheme.



Our private distributed scalar product protocol is basedhenprivate two-party
scalar product protocol by Goethalshal. [16], where each party has a vector and the
protocol outputs the scalar product result of the two veciora split form. That is,
the scalar product result is split between the two partied,eqjuals to the sum of two
shares. The concept of shared private computation canalfeuhd in [1, 15]. A variant
of our protocol allows all participating parties to learm tbcalar product resul - Y.
Alice with S4 and all B;s, each withs;, carry out a private multi-party summation
protocol with their inputs. Our analysis is based on thegwrokin Figure 1.

Operation Scalar Product Phase [Summation Phase Total
Computation (Alice)| O(n) homomorphic op. o(1) O(n) homomorphic op.
Communication (Alice O(n) O(1) O(n)
Computation B;) |O(log y;) homomorphic op. O(1) O(log y:) homomorphic op.
Communication B;) 0(1) o(1) 0(1)

Table 1. Computation and communication complexities of the privistributed scalar product
protocol. We denote with the length of Alice’s vectoX . The logarithmic factor is due to using
multiplications to compute exponentiation in step 3.

2.4 Analysis of the Protocol

The correctness of the protocol is obvious. Alice obtaingfiB; (for all i € [1,n]) an
encryption ofz;y; — s;. Alice multiplies then ciphertexts, and decrypts to obtain the
sum>_" | z;y; — s;. Once Alice obtaing™""_, s;, she computeX - Y = Y"1 | z;y;,.
The security and efficiency of our private multi-party praabfor distributed scalar
product are analyzed.

The security of our private multi-party scalar product paal is based on the se-
curity of the private two-party scalar product protocol[46d the private multi-party
summation protocol [3]. In general, the multi-party praibamong players is secure
when the privacy and correctness are guaranteed for akbrdal is said that a protocol
protects privacy when the information that is leaked by tis¢ritbuted computation is
limited to the information that can be learned from the deatgd output of the com-
putation [31]. In our problem, Alice’s private vectd and each entityB;’s private
valuey; are not leaked to each other, besides the scalar product.tNat in almost
all existing private scalar product solutions, one playsr construct a system of linear
equations based on the specification of the protocol, anvé sidlor the secret values.

Our security is in the semi-honest model, where it is assutmetdll players follow
the protocol, but they are also curious: that is, they magesatl exchanged data and
try to deduce information from it. One challenge in designihe multi-party scalar
product protocol is to prevent collusions among playersdrticular, during the step
of summation, Alice may attempt to collude with a subset alyptsB;s to discover
the private values of other players.

As in almost all private multi-party protocols, we assumattbach party inputs
his or her true private values. Providing skewed valuesnduzomputation can result in



inaccurate results, and wasting the computation power andwidth of all participants
including the dishonest party. In addition, the effect afypding skewed intermediate
value by a participant can be achieved by raising or lowenisgr her own input. This
issue is standard in multi-party protocols (both semi-lsbraed malicious models).
Supposed wants to compute the trustworthiness@fwith help of By,..., B,, and
supposeB; is a friend ofC', B, may modify the output of the protocol by raisingin
Figure 1. As a resultd gets a higher value for’. However,B; can achieve the same
effect by choosing a different input to begin with. Therefahis type of attacks is not
considered in multi-party protocols including ours. It isnth mentioning that once
detected, this type of behaviors could be folded back irkaéiputation of participants,
which can provide incentives for being honest during the otation.

Because of the intrinsic nature of the problems consideres if the protocol is
secure in the malicious model (discussed later), multiypaymputation such as ours is
still vulnerable to probing attacks. For exampledifvants to learnB;’s private value
v, A can engage the protocol with inpt= (0,...,0,1,0,...,0) by setting only the
i-th entry to be one. After the protocdllearnsX x Y = y;, which is the private value
of B;.

The security of our protocol is summarized in the followihgarem.

Theorem 1. Assume thafGen, Enc, Dec) is a semantically secure homomorphic public-
key cryptosystem. The private distributed scalar produztgeol presented in this sec-
tion is secure in the semi-honest model. Alice’s privacyuargnteed when for all

i € [1,n], entity B; is a probabilistic polynomial-time machine. Also, for ak [1,n],

B;'s privacy is information-theoretical.

Proof (sketch): Each entityB; only sees a random ciphertext from Alice, for whiBh
cannot guess the ciphertext. This is because of the sensautiity of the homomor-
phic encryption scheme. HendB; cannot guess Alice’s value.

During the summation protocol, eaéh only sees random values exchanged. Hence,
B; cannot guess the random secrgof B, for all j # i.

On the other hand, Alice only sees (1) random vatug — s;, (2) the sum of all
s;, and (3) the final computation scalar product Y. She does not gain additional
information about” besides the final scalar product. In addition, the protooagnts
collusions among Alice and a subgetof B;s to discover privatg,; value of B; for
B; ¢ D, because the summation protocol guarantees thai;allearn the sum simul-
taneously. Thus, Alice obtains no information about d&hyexcept the scalar product
X - Y, and eaclB; obtains no information about Alice and entiB; for all j # 4. O

The overall computation and communication complexitieswf protocol are the
same as the private two-party scalar product protocol bytliadeet al.[16]. The private
multi-party summation protocol is efficient, as it does reduire any type of encryp-
tion schemes. The summation step does not introduce sigmnifaverhead. Details of
complexities are summarized in Table 1.

Security in malicious modelMalicious adversaries, unlike semi-honest ones, can
behave arbitrarily without following the protocol. They yneefuse to participate the
protocol, abort the protocol without finishing it, and tampéth intermediate values.
Any protocol secure against honest-but-curious adversadan be modified to a proto-
col that is secure against malicious adversaries usinglatdrzero-knowledge proofs



showing that all parties follow the protocol. At each stepthe protocol, each party
uses their transcripts and zero-knowledge proofs to caeMine other parties that they
have followed the protocol without cheating. We do not diéscthe details of how this

transformation is done in this paper.

3 Credential-Based Trust Model

In this section, we present a simple credential-based mastel that is useful for
the trust management in distributed environments. The ridigia is to convert role-
based credentials and related information into quantédtustworthiness values of a
requester, which is used for making authorization decsiQuantitative authorization
policies can allow fine-tuned access decisions insteadafpiallow or deny) verdicts,
and provide more diversified access options for requesteasidition, quantitative au-
thorization enables providers to correlate the qualityest/iee with the qualifications
of requests (e.g., more rewards or higher resolution wigihéi trustworthiness). This
approach utilizes and leverages existing credential aledrased management infras-
tructure for autonomous domains (e.g., [37, 45]) and imesdkie accuracy of trustwor-
thiness prediction.

Our private multi-party scalar product protocol in the poess section can be used
to compute trust values from recommendations in Section 3.2

Terminology: In our model, we define thedministratorof a role as the organiza-
tion that creates and manages the role. If a role crederitzi entity D is signed and
issued by the administrator of the role, that role is saidtamaffiliated roleof D (this
type of role is usually obtained through the affiliation with organization, and thus
the name). If a role credential @ is instead issued through delegation and signed by
entities other than the administrator of the role, that imtmalled adelegated rolef D.
We define arentityto be an organization or an individual. An entity may issusden-
tials. Also, an entity may have one or more affiliated roleslelegated roles, which
are authenticated by role credentials. &ffiliated role credentials the credential for
an affiliated role, and is signed by the administrator of thle.rSimilarly, adelegated
role credentialis the credential for proving a delegated rolepAvilege can be a role
assignment or an action on a resource. A noledministered by entity is denoted
asA.r. Arole defines a group of entities who are members of this role

3.1 Definitions in Credential-Based Trust Model

A trust value in the credential-based trust model reprasghtt an entity thinks about
the trustworthiness of another entity or a role in anothéityeMore specifically, trust
valuet(A4, B) in the credential-based trust model represents what eftitjnks about

the trustworthiness of entiti; trust valuet (A, B.r) in the credential-based trust model
represents what entity thinks about the trustworthiness of ral&r administered by
entity B. For example, a Grid Computing facilitgCLab assigns trust values to types
of users, such as rof@ofessorand rolestudentin a universityU, and roleresearcher
from a research cent&r. When a user holding a certain role credential requests for
access to the grid computing facility, his or her privileges specified based on the



trust value of the role. Note that the credential-based tnaglel is different from exist-
ing trust models that generate rating certificates, whiehsggned certificates of one’s
trustworthiness generated by one’s peers [32].

Ideally, an entityA maintains a trust value for each role in organizati®nFor
example GCLab gives different trust value to roktudentand roleprofessorin a uni-
versity. Hence, a requester wittpeofessorrole credential may be granted a different
level of access privileges from a requester wititadentrole credential.

Definition 1. If an entity A gives a roleB.r in B a trust valuet(A, B.r), then any
individual who has a valid role credential of rolB.r issued byB has the trust value
t(A, B.r).

Trust values can be derived from previous interaction eégpees and/or others’
recommendations, and we focus on the latter. Deriving traisies from previous trans-
actions usually depends on specific applications, and islisotissed in this paper. In
what follows, we usérust value of a credentiab mean the trust value of the credential
issuer.

3.2 Derive Trust Value From Recommendations

We describe aveighted averagenethod for an entityd to compute a trust value on
entity B or role B.r. This computation is useful wheA does not have any previous
interaction experience witB or B.r, andA wants to combine others’ opinions 8for
B.r in forming her trust value.

In the credential-based trust model, tieeommendatioby an entity £ on B is
the trust value(FE, B) that F gives toB. A confidence valueepresents how much
trusts the judgement of a recommender, and is defined asusieviilue ofA on the
recommender.

Above definitions mean that recommendations are weighted'®gonfidence on
the recommenders. Formally, we define the weighted avemgpuatation of trust value
as follows. We denote as the number of recommenders, afidrepresents thé-th
recommender. Let MAXTRUST be the public upper bound of all trust values. Without
loss of generality, we assume a trust value is non-negatfeeassume thatl has al-
ready obtained her trust valugsA, F1), t(A, E2), .. ., t(A, E,,) on the recommenders.
We also assume that each of the recommenBefms formed her trust valuéE;, B)
on the target entityB. (In case no one in the system knows about erfBitya default
trust value can be assignedbto indicate this situation.) The formula for computing
t(A, B) is shown as follows, where weight(A, E;) = ¢(A, E;)/MAX _TRUST.

n

> " w(A, E)t(E;, B) (1)

i=1

t(A, B) =

S|

Value w(A, E;) represents the weight d¥;’s recommendation (trust value) ds
for A. Variants of weighted average computation have been usethar reputation
systems, such as ordered weighted average [41]. The abseept®on also applies
when the target to be evaluated is a role, for exanfiple instead of an entity.



Application of private distributed scalar product protoco|. Equation (1) is useful for
A only when all the trust valueg E;, B) are available. However, trust valugr;, B)

is private information of2;, who has the incentive to hide it, especially whgnthinks
negatively abouB. Similarly, A may consider her trust valueégA, E;) sensitive too.
The problem is how to compute the weighted average in (1)awitleaking the private
information of each entity. Our protocol for private mybérty scalar product in Sec-
tion 2 solves this problem and satisfies the privacy requérgtmNote that our model
is notbased on the assumption of two degrees of separation beamgemwo entities,
that is, we do not need to assume that a new entity is known lexiating peer. If an
entity is not known to the community, it is initialized withust value zero, which may
increase provided that the entity behaves well with otherqeRecall that a trust value
can be based on previous experience of interactions witmtty.e

Combining trust values for accesslf a requester presents multiple role credentials,
then the trust values of the credentials are to be combinedekample, one simple
method is to sum the trust values. This means that the regjueh multiple creden-
tials of low trust values can gain the same access privileges requester with one
credential of a high trust value. This combination methothtaitive and is used in
point-based trust management model [44].

Delegation [5,27,37] is important for transferring trustdecentralized environ-
ments. Associating trust values with delegation credenigadifferent from role cre-
dentials because the values should not only depend on tied eredential issuer, but
also the intermediate delegators’s trustworthiness. (st tnodel can be generalized
to support delegation credentials. Due to space limit, wi tims description and refer
readers to the full version of our paper.

4 Integration With Point-Based Trust Management

Our proposed private multi-party protocol and trust modelseful for general access
control in a decentralized environment. In this paper, weedbe how it can be used for
deriving point values in the existing point-based trust egament model [44], which

was proposed for the privacy protection of sensitive infation in open environments.
Similar concepts of risk management and tokenized trugesysan be found in a

recent JASON report [29]. We briefly introduce the pointdzhmodel.

4.1 Point-Based Trust Management

In the point-based trust management model [44], the awthtion policies of a resource
owner define amccess thresholtbr each of its resources. The threshold is the mini-
mum number of points required for a requester to access ¢lsatirce. For example,
accessing a medical database might require fifty points.r&éseurce owner also de-
fines apoint valuefor each type of credential, which denotes the number oftpan
credits a requester obtains if a type of credential is dssmdo For example, a valid ACM
membership might have ten points. This means that a userisaosk his or her ACM
membership credential in exchange for ten points. (Thisiked a trust management
model as opposed to an access control model, because thecesovner does not



know the identities or role assignments of requesigysori as in conventional access
control settings. )

Each user defines arivacy scorefor each of their credentials. The privacy score
represents the inverse of the willingness to disclose aecrtil. For example, Alice
may give a privacy score of ten to her college ID, and give fifther credit card. The
user is granted access to a certain resource if the accegshpeishold is met and all of
the disclosed credentials are valid. Otherwise, the aéselenied. From the requester’s
point of view, one central question is how to fulfill the acedweshold while disclosing
the least amount of sensitive information.

The credential selection problem here is to determine amapicombination of
requester’s credentials to disclose to the resource owueln, that the minimal amount
of sensitive information is disclosed and the access tlotdsif the requested resource
is satisfied by the disclosed credentials. A private twdypdynamic programming pro-
tocol has been proposed to solve the credential selectadyigm [44].

4.2 Derivation of Point Values

Existing work on point-based trust management [44] doedestribe how point values
can be obtained or how to systematically derive points epwading to credentials.
The credential-based trust model presented in Section\Beanaghis question. Using
the described methods, a resource owner computes the atuss\of credential issuers
and their roles. The resulting trust values are to be useaias yalues of a resource
owner in point-based trust management.

For delegation credentials presented by a requester, arcesowner can use the
trust model to compute the discounted trust value of theesrial. The trust value
can only be computed exactly when the delegation credestigdvealed. However,
this information is private to the requester in the creddrgelection computation in
point-based trust management. To mitigate this problerasaurce owner can use an
approximate trust value during the credential selectiommatation, and then make
adjustments when credentials are exchanged later.

The credential-based trust model completes the desaripfian important aspect
in point-based authorization. Next, we give a concreteiagfbn for point-based au-
thorization in location-query systems.

5 Applications to Location Query Systems

Privacy is an important concern in systems that use presamtether real-time user
data. Presence provides great utility, but also has thepatéor abuse. Managing secu-
rity and privacy preferences in these systems can be complexapproach to protect
the privacy is to apply distributed anonymity algorithmssensor networks [19, 20].
Another type of solutions is to augment existing routingtpeols to enhance source-
location privacy in sensor and conventional networks [83, 3

However, these existing solutions are not suitable forrsdégpes of applications.
In many scenarios such as 911 or medical emergency, road:sidrgency of a GPS-
enabled vehicle, and police enforcement agents, the totatformation of a subject



is critical, and should not be hidden or anonymous. Also faneple, in distributed
collaboration applications such as Meeting Central [42]nb able to share presence
information to trusted collaborators is desirable.

Generally, sharing presence information implies sharamg#ive personal data such
as computer activity, physical location, IM status, phose,wand other real-time at-
tributes associated with a given user. Managing the prig&dtlyis data requires captur-
ing the user’s preferences and concerns, which are typigalte individualistic. Some
users feel comfortable sharing any personal details, bst mant at least some control
over what is shared and with whom.

A presence system can provide a service that runs on behediobf user, acting as
that user’s always-online proxy. Through this proxy, therdsas ultimate control over
all their associated data. The proxy is resolvable baseti®mnser’s identity, and can
expose services that can be queried by other entities inytera. One such service
provides presence querying.

Alice’s proxy chooses access decisions through a set of mhespecific entities
called advisors. Each advisor provides input on possibbésta responses based on
its domain of expertise (e.g., reputation, purpose of tteryjuontext of the exchange,
value of the requested data). These inputs are then aggdgatetermine the overall
advice about a possible response. The idea is to provideibl#erechanism that more
accurately represents a user’s decision process. Ourrtigidieased trust model and
point-based authorization can be used to implement a flexithVisor system.

Alice’s proxy contains her policies and preferences, idirlg the trust values of
credentials that may be used for authentication. Alice dksiines the precision asso-
ciated with certain trust values. For example, if the trudue of the query issuer is
twenty, then she might release her location informatiorcthxdf the trust value is five,
then she might releasefazzy interpretatiorof her location, for example, the build-
ing or city where she is currently. Phrased more concretieBlice’s closest friend,
Bob, queries about her location, a precise answer is redutfia stranger queries her
location, nothing about Alice should be disclosed.

The reputation advisor computes the trust value of eachygs®uer, based on their
credential information. The trust value is then comparedltoe’s policies, and the
corresponding location result is returned. The advisos&lesin Alice’s proxy that is
a tamper-resistant system in order to prevent the leakirgieéte trust values. Note
that this model makes it easy to use the trust value not judéaiding what to share,
but in determining the system’s confidence that the rightsitet is made. A high trust
value represents high confidence and can be executed whibthering Alice. A low
trust value represents low confidence in a decision, andaifdoough, may warrant
interrupting Alice to check that the right decision is beingde for her. This confidence
metric is then feeded back into the system for use the next éirsimilar query from
the same entity arrives, and used to provide an aggregage sépast confidence.

For location-query systems, the main advantages of usiimg-pased trust man-
agement as opposed to conventional access control megtwmaig the flexibility of
making access control decisions with an arbitrary degrger@tision and the ability
to derive some simple notion of confidence. In order to achtbe same expressive-



ness, a boolean-based access control policy would be vefficient, as one needs to
enumerate all of the possible combinations of authorinatio

6 Related Work

Secure Multi-party Computation (SMC) was introduced inrais&l paper by Yao [43],
which contained a scheme for secure comparison. Suppase@lith inputz) and Bob
(with inputb) desire to determine whether or nok b without revealing any informa-
tion other than this result (this is known #30’s Millionaire Problen. More generally,
SMC allows Alice and Bob with respective private inputandb to compute a function
f(a, b) by engaging in a secure protocol for public functjoriFurthermore, the protocol
is private in that it reveals no additional information. $hieans that Alice (resp. Bob)
learns nothing other than what can be deduced feoresp.b) and f(a, b). Elegant
general schemes are given in [6,10, 17, 18] for computingangtion f privately.

Besides the generic work in the area of SMC, there has beengxé work on the
privacy-preserving computation of various functions. Erample, computational ge-
ometry [2, 12], privacy-preserving computational bioldd}; and private two-party dy-
namic programming for the knapsack problem [44]. Comparexisting private scalar
product protocols [1, 16, 40], our protocol is designed fengral privacy-preserving
distributed scalar product computation, where vectorashre distributed among mul-
tiple players. The protocol has promising applicationshia information discovery of
reputation systems. Our security is efficient, and is cowplarto the private two-party
scalar product of Goethalt al. [16].

Recently, there are also solutions for privacy-preseraintgmated trouble-shooting
[21], privacy-preserving distributed data mining [22]jvate set operations [14, 24],
and equality tests [28]. We do not enumerate other privathi4party computation
work as their approaches are significantly different frorrsou

There has been much work on the privacy-awareness for wbiggucomputing en-
vironments [19, 20, 23, 26, 35]. An existing approach to gecbthe location-privacy in
sensor networks is through distributed anonymity algarihhat are applied in a sensor
network, before service providers gain access to the dat20]. Another category of
solutions is to augment existing routing protocols to emlessource-location privacy in
sensor and conventional networks [23, 36]. A more fine-@@iapproach for manag-
ing the access to location data is based on privacy-poli2&s5], which is closer to
our solution. Using point-based authorization, we are t$ipport more flexible trust
establishment mechanism without rigid boolean-basedysliecifications.

Our trust model work is related to the existing work on recandation or repu-
tation systems [7, 9, 25] in decentralized models. Trust@vies that are generated by
recommendations and past experiences have been usedstogdtablishment in both
ad-hoc and ubiquitous computing environments [8, 13, 3B, B&is type of trust evi-
dence is flexible and straightforward to collect. The notddruncheatable reputation
was proposed in recent work by Carbunar and Sion [9], wholdpeé a reputation
mechanism that prevents untruthful reputation infornratising witnesses. In com-
parison, the main property of our trust model is the use dd-bElsed organizational



infrastructure to derive trust values, which aims to imgrtwe scalability of trust com-
putation.

7 Conclusions and Future Work

In this paper, we developed a general protocol for privagserving multi-party scalar
product computation. This protocol can be used for peewsintly compute a weighted
trust score fronmprivate recommendations angrivate weights. We then presented a
simple credential-based trust model for evaluating trostiwness based on role and
delegation credentials, and recommendations. We alsaidedcan architecture of a
location-query system for giving fuzzy location infornatibased on the trust score of
arequester.

There are several interesting areas to explore for futun&.wone is to evaluate
other types of trust computation besides weighted averfagreexample, the ordered-
weighted-average operator allows the user to weight thet wgdues in relation to their
relative ordering [41]. Another promising direction is tegign private multi-party pro-
tocols for other desirable functionalities in a trust mod@r example, an entity wants
to find out who else in the system has a similar profile of tr@dtes as his or her
own — other entities who have similar likes and dislikes. pheblem becomes how
to privately compute the distance between two set of trusiagaaccording to certain
metrics. As part of future works, we also plan to evaluatetfectiveness of credential-
based trust model in answering fuzzy location queries. €Rperimentation involves
an implementation of the point-based authorization mdtlelyweighted scalar protocol
computation, and the comparison tests with conventionat tnodels.
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